"""
Calling + translation logic for anthropic's `/v1/messages` endpoint
"""

import copy
import json
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Tuple,
    Union,
    cast,
)

import httpx  # type: ignore

import litellm
import litellm.litellm_core_utils
import litellm.types
import litellm.types.utils
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.custom_httpx.http_handler import (
    AsyncHTTPHandler,
    HTTPHandler,
    _get_httpx_client,
    get_async_httpx_client,
)
from litellm.types.llms.anthropic import (
    ContentBlockDelta,
    ContentBlockStart,
    ContentBlockStop,
    MessageBlockDelta,
    MessageStartBlock,
    UsageDelta,
)
from litellm.types.llms.openai import (
    ChatCompletionRedactedThinkingBlock,
    ChatCompletionThinkingBlock,
    ChatCompletionToolCallChunk,
)
from litellm.types.utils import (
    Delta,
    GenericStreamingChunk,
    LlmProviders,
    ModelResponse,
    ModelResponseStream,
    StreamingChoices,
    Usage,
)

from ...base import BaseLLM
from ..common_utils import AnthropicError, process_anthropic_headers
from .transformation import AnthropicConfig

if TYPE_CHECKING:
    from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
    from litellm.llms.base_llm.chat.transformation import BaseConfig


async def make_call(
    client: Optional[AsyncHTTPHandler],
    api_base: str,
    headers: dict,
    data: str,
    model: str,
    messages: list,
    logging_obj,
    timeout: Optional[Union[float, httpx.Timeout]],
    json_mode: bool,
) -> Tuple[Any, httpx.Headers]:
    if client is None:
        client = litellm.module_level_aclient

    try:
        response = await client.post(
            api_base, headers=headers, data=data, stream=True, timeout=timeout
        )
    except httpx.HTTPStatusError as e:
        error_headers = getattr(e, "headers", None)
        error_response = getattr(e, "response", None)
        if error_headers is None and error_response:
            error_headers = getattr(error_response, "headers", None)
        raise AnthropicError(
            status_code=e.response.status_code,
            message=await e.response.aread(),
            headers=error_headers,
        )
    except Exception as e:
        for exception in litellm.LITELLM_EXCEPTION_TYPES:
            if isinstance(e, exception):
                raise e
        raise AnthropicError(status_code=500, message=str(e))

    completion_stream = ModelResponseIterator(
        streaming_response=response.aiter_lines(),
        sync_stream=False,
        json_mode=json_mode,
    )

    # LOGGING
    logging_obj.post_call(
        input=messages,
        api_key="",
        original_response=completion_stream,  # Pass the completion stream for logging
        additional_args={"complete_input_dict": data},
    )

    return completion_stream, response.headers


def make_sync_call(
    client: Optional[HTTPHandler],
    api_base: str,
    headers: dict,
    data: str,
    model: str,
    messages: list,
    logging_obj,
    timeout: Optional[Union[float, httpx.Timeout]],
    json_mode: bool,
) -> Tuple[Any, httpx.Headers]:
    if client is None:
        client = litellm.module_level_client  # re-use a module level client

    try:
        response = client.post(
            api_base, headers=headers, data=data, stream=True, timeout=timeout
        )
    except httpx.HTTPStatusError as e:
        error_headers = getattr(e, "headers", None)
        error_response = getattr(e, "response", None)
        if error_headers is None and error_response:
            error_headers = getattr(error_response, "headers", None)
        raise AnthropicError(
            status_code=e.response.status_code,
            message=e.response.read(),
            headers=error_headers,
        )
    except Exception as e:
        for exception in litellm.LITELLM_EXCEPTION_TYPES:
            if isinstance(e, exception):
                raise e
        raise AnthropicError(status_code=500, message=str(e))

    if response.status_code != 200:
        response_headers = getattr(response, "headers", None)
        raise AnthropicError(
            status_code=response.status_code,
            message=response.read(),
            headers=response_headers,
        )

    completion_stream = ModelResponseIterator(
        streaming_response=response.iter_lines(), sync_stream=True, json_mode=json_mode
    )

    # LOGGING
    logging_obj.post_call(
        input=messages,
        api_key="",
        original_response="first stream response received",
        additional_args={"complete_input_dict": data},
    )

    return completion_stream, response.headers


class AnthropicChatCompletion(BaseLLM):
    def __init__(self) -> None:
        super().__init__()

    async def acompletion_stream_function(
        self,
        model: str,
        messages: list,
        api_base: str,
        custom_prompt_dict: dict,
        model_response: ModelResponse,
        print_verbose: Callable,
        timeout: Union[float, httpx.Timeout],
        client: Optional[AsyncHTTPHandler],
        encoding,
        api_key,
        logging_obj,
        stream,
        _is_function_call,
        data: dict,
        json_mode: bool,
        optional_params=None,
        litellm_params=None,
        logger_fn=None,
        headers={},
    ):
        from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper

        data["stream"] = True

        completion_stream, headers = await make_call(
            client=client,
            api_base=api_base,
            headers=headers,
            data=json.dumps(data),
            model=model,
            messages=messages,
            logging_obj=logging_obj,
            timeout=timeout,
            json_mode=json_mode,
        )
        streamwrapper = CustomStreamWrapper(
            completion_stream=completion_stream,
            model=model,
            custom_llm_provider="anthropic",
            logging_obj=logging_obj,
            _response_headers=process_anthropic_headers(headers),
        )
        return streamwrapper

    async def acompletion_function(
        self,
        model: str,
        messages: list,
        api_base: str,
        custom_prompt_dict: dict,
        model_response: ModelResponse,
        print_verbose: Callable,
        timeout: Union[float, httpx.Timeout],
        encoding,
        api_key,
        logging_obj,
        stream,
        _is_function_call,
        data: dict,
        optional_params: dict,
        json_mode: bool,
        litellm_params: dict,
        provider_config: "BaseConfig",
        logger_fn=None,
        headers={},
        client: Optional[AsyncHTTPHandler] = None,
    ) -> Union[ModelResponse, "CustomStreamWrapper"]:
        async_handler = client or get_async_httpx_client(
            llm_provider=litellm.LlmProviders.ANTHROPIC
        )

        try:
            response = await async_handler.post(
                api_base, headers=headers, json=data, timeout=timeout
            )
        except Exception as e:
            ## LOGGING
            logging_obj.post_call(
                input=messages,
                api_key=api_key,
                original_response=str(e),
                additional_args={"complete_input_dict": data},
            )
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            if error_response and hasattr(error_response, "text"):
                error_text = getattr(error_response, "text", error_text)
            raise AnthropicError(
                message=error_text,
                status_code=status_code,
                headers=error_headers,
            )

        return provider_config.transform_response(
            model=model,
            raw_response=response,
            model_response=model_response,
            logging_obj=logging_obj,
            api_key=api_key,
            request_data=data,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            encoding=encoding,
            json_mode=json_mode,
        )

    def completion(
        self,
        model: str,
        messages: list,
        api_base: str,
        custom_llm_provider: str,
        custom_prompt_dict: dict,
        model_response: ModelResponse,
        print_verbose: Callable,
        encoding,
        api_key,
        logging_obj,
        optional_params: dict,
        timeout: Union[float, httpx.Timeout],
        litellm_params: dict,
        acompletion=None,
        logger_fn=None,
        headers={},
        client=None,
    ):
        from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
        from litellm.utils import ProviderConfigManager

        optional_params = copy.deepcopy(optional_params)
        stream = optional_params.pop("stream", None)
        json_mode: bool = optional_params.pop("json_mode", False)
        is_vertex_request: bool = optional_params.pop("is_vertex_request", False)
        _is_function_call = False
        messages = copy.deepcopy(messages)
        headers = AnthropicConfig().validate_environment(
            api_key=api_key,
            headers=headers,
            model=model,
            messages=messages,
            optional_params={**optional_params, "is_vertex_request": is_vertex_request},
            litellm_params=litellm_params,
        )

        config = ProviderConfigManager.get_provider_chat_config(
            model=model,
            provider=LlmProviders(custom_llm_provider),
        )
        if config is None:
            raise ValueError(
                f"Provider config not found for model: {model} and provider: {custom_llm_provider}"
            )

        data = config.transform_request(
            model=model,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            headers=headers,
        )

        ## LOGGING
        logging_obj.pre_call(
            input=messages,
            api_key=api_key,
            additional_args={
                "complete_input_dict": data,
                "api_base": api_base,
                "headers": headers,
            },
        )
        print_verbose(f"_is_function_call: {_is_function_call}")
        if acompletion is True:
            if (
                stream is True
            ):  # if function call - fake the streaming (need complete blocks for output parsing in openai format)
                print_verbose("makes async anthropic streaming POST request")
                data["stream"] = stream
                return self.acompletion_stream_function(
                    model=model,
                    messages=messages,
                    data=data,
                    api_base=api_base,
                    custom_prompt_dict=custom_prompt_dict,
                    model_response=model_response,
                    print_verbose=print_verbose,
                    encoding=encoding,
                    api_key=api_key,
                    logging_obj=logging_obj,
                    optional_params=optional_params,
                    stream=stream,
                    _is_function_call=_is_function_call,
                    json_mode=json_mode,
                    litellm_params=litellm_params,
                    logger_fn=logger_fn,
                    headers=headers,
                    timeout=timeout,
                    client=(
                        client
                        if client is not None and isinstance(client, AsyncHTTPHandler)
                        else None
                    ),
                )
            else:
                return self.acompletion_function(
                    model=model,
                    messages=messages,
                    data=data,
                    api_base=api_base,
                    custom_prompt_dict=custom_prompt_dict,
                    model_response=model_response,
                    print_verbose=print_verbose,
                    encoding=encoding,
                    api_key=api_key,
                    provider_config=config,
                    logging_obj=logging_obj,
                    optional_params=optional_params,
                    stream=stream,
                    _is_function_call=_is_function_call,
                    litellm_params=litellm_params,
                    logger_fn=logger_fn,
                    headers=headers,
                    client=client,
                    json_mode=json_mode,
                    timeout=timeout,
                )
        else:
            ## COMPLETION CALL
            if (
                stream is True
            ):  # if function call - fake the streaming (need complete blocks for output parsing in openai format)
                data["stream"] = stream
                completion_stream, headers = make_sync_call(
                    client=client,
                    api_base=api_base,
                    headers=headers,  # type: ignore
                    data=json.dumps(data),
                    model=model,
                    messages=messages,
                    logging_obj=logging_obj,
                    timeout=timeout,
                    json_mode=json_mode,
                )
                return CustomStreamWrapper(
                    completion_stream=completion_stream,
                    model=model,
                    custom_llm_provider="anthropic",
                    logging_obj=logging_obj,
                    _response_headers=process_anthropic_headers(headers),
                )

            else:
                if client is None or not isinstance(client, HTTPHandler):
                    client = _get_httpx_client(
                        params={"timeout": timeout}
                    )
                else:
                    client = client

                try:
                    response = client.post(
                        api_base,
                        headers=headers,
                        data=json.dumps(data),
                        timeout=timeout,
                    )
                except Exception as e:
                    status_code = getattr(e, "status_code", 500)
                    error_headers = getattr(e, "headers", None)
                    error_text = getattr(e, "text", str(e))
                    error_response = getattr(e, "response", None)
                    if error_headers is None and error_response:
                        error_headers = getattr(error_response, "headers", None)
                    if error_response and hasattr(error_response, "text"):
                        error_text = getattr(error_response, "text", error_text)
                    raise AnthropicError(
                        message=error_text,
                        status_code=status_code,
                        headers=error_headers,
                    )

        return config.transform_response(
            model=model,
            raw_response=response,
            model_response=model_response,
            logging_obj=logging_obj,
            api_key=api_key,
            request_data=data,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            encoding=encoding,
            json_mode=json_mode,
        )

    def embedding(self):
        # logic for parsing in - calling - parsing out model embedding calls
        pass


class ModelResponseIterator:
    def __init__(
        self, streaming_response, sync_stream: bool, json_mode: Optional[bool] = False
    ):
        self.streaming_response = streaming_response
        self.response_iterator = self.streaming_response
        self.content_blocks: List[ContentBlockDelta] = []
        self.tool_index = -1
        self.json_mode = json_mode

        # Track if we're currently streaming a response_format tool
        self.is_response_format_tool: bool = False
        # Track if we've converted any response_format tools (affects finish_reason)
        self.converted_response_format_tool: bool = False

    def check_empty_tool_call_args(self) -> bool:
        """
        Check if the tool call block so far has been an empty string
        """
        args = ""
        # if text content block -> skip
        if len(self.content_blocks) == 0:
            return False

        if (
            self.content_blocks[0]["delta"]["type"] == "text_delta"
            or self.content_blocks[0]["delta"]["type"] == "thinking_delta"
        ):
            return False

        for block in self.content_blocks:
            if block["delta"]["type"] == "input_json_delta":
                args += block["delta"].get("partial_json", "")  # type: ignore

        if len(args) == 0:
            return True
        return False

    def _handle_usage(self, anthropic_usage_chunk: Union[dict, UsageDelta]) -> Usage:
        return AnthropicConfig().calculate_usage(
            usage_object=cast(dict, anthropic_usage_chunk), reasoning_content=None
        )

    def _content_block_delta_helper(
        self, chunk: dict
    ) -> Tuple[
        str,
        Optional[ChatCompletionToolCallChunk],
        List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]],
        Dict[str, Any],
    ]:
        """
        Helper function to handle the content block delta
        """
        text = ""
        tool_use: Optional[ChatCompletionToolCallChunk] = None
        provider_specific_fields = {}
        content_block = ContentBlockDelta(**chunk)  # type: ignore
        thinking_blocks: List[
            Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
        ] = []

        self.content_blocks.append(content_block)
        if "text" in content_block["delta"]:
            text = content_block["delta"]["text"]
        elif "partial_json" in content_block["delta"]:
            tool_use = {
                "id": None,
                "type": "function",
                "function": {
                    "name": None,
                    "arguments": content_block["delta"]["partial_json"],
                },
                "index": self.tool_index,
            }
        elif "citation" in content_block["delta"]:
            provider_specific_fields["citation"] = content_block["delta"]["citation"]
        elif (
            "thinking" in content_block["delta"]
            or "signature" in content_block["delta"]
        ):
            thinking_blocks = [
                ChatCompletionThinkingBlock(
                    type="thinking",
                    thinking=content_block["delta"].get("thinking") or "",
                    signature=content_block["delta"].get("signature"),
                )
            ]
            provider_specific_fields["thinking_blocks"] = thinking_blocks

        return text, tool_use, thinking_blocks, provider_specific_fields

    def _handle_reasoning_content(
        self,
        thinking_blocks: List[
            Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
        ],
    ) -> Optional[str]:
        """
        Handle the reasoning content
        """
        reasoning_content = None
        for block in thinking_blocks:
            thinking_content = cast(Optional[str], block.get("thinking"))
            if reasoning_content is None:
                reasoning_content = ""
            if thinking_content is not None:
                reasoning_content += thinking_content
        return reasoning_content

    def _handle_redacted_thinking_content(
        self,
        content_block_start: ContentBlockStart,
        provider_specific_fields: Dict[str, Any],
    ) -> Tuple[List[ChatCompletionRedactedThinkingBlock], Dict[str, Any]]:
        """
        Handle the redacted thinking content
        """
        thinking_blocks = [
            ChatCompletionRedactedThinkingBlock(
                type="redacted_thinking",
                data=content_block_start["content_block"]["data"],  # type: ignore
            )
        ]
        provider_specific_fields["thinking_blocks"] = thinking_blocks

        return thinking_blocks, provider_specific_fields

    def get_content_block_start(self, chunk: dict) -> ContentBlockStart:
        from litellm.types.llms.anthropic import (
            ContentBlockStartText,
            ContentBlockStartToolUse,
        )

        if chunk.get("content_block", {}).get("type") == "tool_use":
            content_block_start = ContentBlockStartToolUse(**chunk)  # type: ignore
        else:
            content_block_start = ContentBlockStartText(**chunk)  # type: ignore

        return content_block_start

    def chunk_parser(self, chunk: dict) -> ModelResponseStream:
        try:
            type_chunk = chunk.get("type", "") or ""

            text = ""
            tool_use: Optional[ChatCompletionToolCallChunk] = None
            finish_reason = ""
            usage: Optional[Usage] = None
            provider_specific_fields: Dict[str, Any] = {}
            reasoning_content: Optional[str] = None
            thinking_blocks: Optional[
                List[
                    Union[
                        ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
                    ]
                ]
            ] = None

            index = int(chunk.get("index", 0))
            if type_chunk == "content_block_delta":
                """
                Anthropic content chunk
                chunk = {'type': 'content_block_delta', 'index': 0, 'delta': {'type': 'text_delta', 'text': 'Hello'}}
                """
                (
                    text,
                    tool_use,
                    thinking_blocks,
                    provider_specific_fields,
                ) = self._content_block_delta_helper(chunk=chunk)
                if thinking_blocks:
                    reasoning_content = self._handle_reasoning_content(
                        thinking_blocks=thinking_blocks
                    )
            elif type_chunk == "content_block_start":
                """
                event: content_block_start
                data: {"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_01T1x1fJ34qAmk2tNTrN7Up6","name":"get_weather","input":{}}}
                """

                content_block_start = self.get_content_block_start(chunk=chunk)
                self.content_blocks = []  # reset content blocks when new block starts
                if content_block_start["content_block"]["type"] == "text":
                    text = content_block_start["content_block"]["text"]
                elif content_block_start["content_block"]["type"] == "tool_use":
                    self.tool_index += 1
                    tool_use = {
                        "id": content_block_start["content_block"]["id"],
                        "type": "function",
                        "function": {
                            "name": content_block_start["content_block"]["name"],
                            "arguments": "",
                        },
                        "index": self.tool_index,
                    }
                elif (
                    content_block_start["content_block"]["type"] == "redacted_thinking"
                ):
                    (
                        thinking_blocks,
                        provider_specific_fields,
                    ) = self._handle_redacted_thinking_content(  # type: ignore
                        content_block_start=content_block_start,
                        provider_specific_fields=provider_specific_fields,
                    )
            elif type_chunk == "content_block_stop":
                ContentBlockStop(**chunk)  # type: ignore
                # check if tool call content block
                is_empty = self.check_empty_tool_call_args()
                if is_empty:
                    tool_use = {
                        "id": None,
                        "type": "function",
                        "function": {
                            "name": None,
                            "arguments": "{}",
                        },
                        "index": self.tool_index,
                    }
                # Reset response_format tool tracking when block stops
                self.is_response_format_tool = False
            elif type_chunk == "message_delta":
                finish_reason, usage = self._handle_message_delta(chunk)
            elif type_chunk == "message_start":
                """
                Anthropic
                chunk = {
                    "type": "message_start",
                    "message": {
                        "id": "msg_vrtx_011PqREFEMzd3REdCoUFAmdG",
                        "type": "message",
                        "role": "assistant",
                        "model": "claude-3-sonnet-20240229",
                        "content": [],
                        "stop_reason": null,
                        "stop_sequence": null,
                        "usage": {
                            "input_tokens": 270,
                            "output_tokens": 1
                        }
                    }
                }
                """
                message_start_block = MessageStartBlock(**chunk)  # type: ignore
                if "usage" in message_start_block["message"]:
                    usage = self._handle_usage(
                        anthropic_usage_chunk=message_start_block["message"]["usage"]
                    )
            elif type_chunk == "error":
                """
                {"type":"error","error":{"details":null,"type":"api_error","message":"Internal server error"}      }
                """
                _error_dict = chunk.get("error", {}) or {}
                message = _error_dict.get("message", None) or str(chunk)
                raise AnthropicError(
                    message=message,
                    status_code=500,  # it looks like Anthropic API does not return a status code in the chunk error - default to 500
                )

            text, tool_use = self._handle_json_mode_chunk(text=text, tool_use=tool_use)

            returned_chunk = ModelResponseStream(
                choices=[
                    StreamingChoices(
                        index=index,
                        delta=Delta(
                            content=text,
                            tool_calls=[tool_use] if tool_use is not None else None,
                            provider_specific_fields=(
                                provider_specific_fields
                                if provider_specific_fields
                                else None
                            ),
                            thinking_blocks=(
                                thinking_blocks if thinking_blocks else None
                            ),
                            reasoning_content=reasoning_content,
                        ),
                        finish_reason=finish_reason,
                    )
                ],
                usage=usage,
            )

            return returned_chunk

        except json.JSONDecodeError:
            raise ValueError(f"Failed to decode JSON from chunk: {chunk}")

    def _handle_json_mode_chunk(
        self, text: str, tool_use: Optional[ChatCompletionToolCallChunk]
    ) -> Tuple[str, Optional[ChatCompletionToolCallChunk]]:
        """
        If JSON mode is enabled, convert the tool call to a message.

        Anthropic returns the JSON schema as part of the tool call
        OpenAI returns the JSON schema as part of the content, this handles placing it in the content

        Tool streaming follows Anthropic's fine-grained streaming pattern:
        - content_block_start: Contains complete tool info (id, name, empty arguments)
        - content_block_delta: Contains argument deltas (partial_json)
        - content_block_stop: Signals end of tool

        Reference: https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/fine-grained-tool-streaming

        Args:
            text: str
            tool_use: Optional[ChatCompletionToolCallChunk]
        Returns:
            Tuple[str, Optional[ChatCompletionToolCallChunk]]

            text: The text to use in the content
            tool_use: The ChatCompletionToolCallChunk to use in the chunk response
        """
        if not self.json_mode or tool_use is None:
            return text, tool_use

        # Check if this is a new tool call (has id)
        if tool_use.get("id") is not None:
            # New tool call from content_block_start - tool name is always complete here
            # (per Anthropic's fine-grained streaming pattern)
            tool_name = tool_use.get("function", {}).get("name", "")
            self.is_response_format_tool = tool_name == RESPONSE_FORMAT_TOOL_NAME

        # Convert tool to content if we're tracking a response_format tool
        if self.is_response_format_tool:
            message = AnthropicConfig._convert_tool_response_to_message(
                tool_calls=[tool_use]
            )
            if message is not None:
                text = message.content or ""
                tool_use = None
                # Track that we converted a response_format tool
                self.converted_response_format_tool = True

        return text, tool_use

    def _handle_message_delta(self, chunk: dict) -> Tuple[str, Optional[Usage]]:
        """
        Handle message_delta event for finish_reason and usage.

        Args:
            chunk: The message_delta chunk

        Returns:
            Tuple of (finish_reason, usage)
        """
        message_delta = MessageBlockDelta(**chunk)  # type: ignore
        finish_reason = map_finish_reason(
            finish_reason=message_delta["delta"].get("stop_reason", "stop") or "stop"
        )
        # Override finish_reason to "stop" if we converted response_format tools
        # (matches OpenAI behavior and non-streaming Anthropic implementation)
        if self.converted_response_format_tool:
            finish_reason = "stop"
        usage = self._handle_usage(anthropic_usage_chunk=message_delta["usage"])
        return finish_reason, usage

    # Sync iterator
    def __iter__(self):
        return self

    def __next__(self):
        try:
            chunk = self.response_iterator.__next__()
        except StopIteration:
            raise StopIteration
        except ValueError as e:
            raise RuntimeError(f"Error receiving chunk from stream: {e}")

        try:
            str_line = chunk
            if isinstance(chunk, bytes):  # Handle binary data
                str_line = chunk.decode("utf-8")  # Convert bytes to string
                index = str_line.find("data:")
                if index != -1:
                    str_line = str_line[index:]

            if str_line.startswith("data:"):
                data_json = json.loads(str_line[5:])
                return self.chunk_parser(chunk=data_json)
            else:
                return GenericStreamingChunk(
                    text="",
                    is_finished=False,
                    finish_reason="",
                    usage=None,
                    index=0,
                    tool_use=None,
                )
        except StopIteration:
            raise StopIteration
        except ValueError as e:
            raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")

    # Async iterator
    def __aiter__(self):
        self.async_response_iterator = self.streaming_response.__aiter__()
        return self

    async def __anext__(self):
        try:
            chunk = await self.async_response_iterator.__anext__()
        except StopAsyncIteration:
            raise StopAsyncIteration
        except ValueError as e:
            raise RuntimeError(f"Error receiving chunk from stream: {e}")

        try:
            str_line = chunk
            if isinstance(chunk, bytes):  # Handle binary data
                str_line = chunk.decode("utf-8")  # Convert bytes to string
                index = str_line.find("data:")
                if index != -1:
                    str_line = str_line[index:]

            if str_line.startswith("data:"):
                data_json = json.loads(str_line[5:])
                return self.chunk_parser(chunk=data_json)
            else:
                return GenericStreamingChunk(
                    text="",
                    is_finished=False,
                    finish_reason="",
                    usage=None,
                    index=0,
                    tool_use=None,
                )
        except StopAsyncIteration:
            raise StopAsyncIteration
        except ValueError as e:
            raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")

    def convert_str_chunk_to_generic_chunk(self, chunk: str) -> ModelResponseStream:
        """
        Convert a string chunk to a GenericStreamingChunk

        Note: This is used for Anthropic pass through streaming logging

        We can move __anext__, and __next__ to use this function since it's common logic.
        Did not migrate them to minmize changes made in 1 PR.
        """
        str_line = chunk
        if isinstance(chunk, bytes):  # Handle binary data
            str_line = chunk.decode("utf-8")  # Convert bytes to string
            index = str_line.find("data:")
            if index != -1:
                str_line = str_line[index:]

        if str_line.startswith("data:"):
            data_json = json.loads(str_line[5:])
            return self.chunk_parser(chunk=data_json)
        else:
            return ModelResponseStream()
