# What is this?
## Common Utility file for Logging handler
# Logging function -> log the exact model details + what's being sent | Non-Blocking
import copy
import datetime
import json
import os
import re
import subprocess
import sys
import time
import traceback
import uuid
from datetime import datetime as dt_object
from functools import lru_cache
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    Type,
    Union,
    cast,
)

from httpx import Response
from pydantic import BaseModel

import litellm
from litellm import (
    _custom_logger_compatible_callbacks_literal,
    json_logs,
    log_raw_request_response,
    turn_off_message_logging,
)
from litellm._logging import _is_debugging_on, verbose_logger
from litellm.batches.batch_utils import _handle_completed_batch
from litellm.caching.caching import DualCache, InMemoryCache
from litellm.caching.caching_handler import LLMCachingHandler
from litellm.constants import (
    DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT,
    DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT,
    SENTRY_DENYLIST,
    SENTRY_PII_DENYLIST,
)
from litellm.cost_calculator import (
    RealtimeAPITokenUsageProcessor,
    _select_model_name_for_cost_calc,
)
from litellm.integrations.agentops import AgentOps
from litellm.integrations.anthropic_cache_control_hook import AnthropicCacheControlHook
from litellm.integrations.arize.arize import ArizeLogger
from litellm.integrations.custom_guardrail import CustomGuardrail
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations.deepeval.deepeval import DeepEvalLogger
from litellm.integrations.mlflow import MlflowLogger
from litellm.integrations.sqs import SQSLogger
from litellm.litellm_core_utils.get_litellm_params import get_litellm_params
from litellm.litellm_core_utils.llm_cost_calc.tool_call_cost_tracking import (
    StandardBuiltInToolCostTracking,
)
from litellm.litellm_core_utils.model_param_helper import ModelParamHelper
from litellm.litellm_core_utils.redact_messages import (
    redact_message_input_output_from_custom_logger,
    redact_message_input_output_from_logging,
)
from litellm.responses.utils import ResponseAPILoggingUtils
from litellm.types.llms.openai import (
    AllMessageValues,
    Batch,
    FineTuningJob,
    HttpxBinaryResponseContent,
    OpenAIFileObject,
    OpenAIModerationResponse,
    ResponseCompletedEvent,
    ResponsesAPIResponse,
)
from litellm.types.mcp import MCPPostCallResponseObject
from litellm.types.rerank import RerankResponse
from litellm.types.router import CustomPricingLiteLLMParams
from litellm.types.utils import (
    CallTypes,
    CostResponseTypes,
    DynamicPromptManagementParamLiteral,
    EmbeddingResponse,
    ImageResponse,
    LiteLLMBatch,
    LiteLLMLoggingBaseClass,
    LiteLLMRealtimeStreamLoggingObject,
    ModelResponse,
    ModelResponseStream,
    RawRequestTypedDict,
    StandardBuiltInToolsParams,
    StandardCallbackDynamicParams,
    StandardLoggingAdditionalHeaders,
    StandardLoggingHiddenParams,
    StandardLoggingMCPToolCall,
    StandardLoggingMetadata,
    StandardLoggingModelCostFailureDebugInformation,
    StandardLoggingModelInformation,
    StandardLoggingPayload,
    StandardLoggingPayloadErrorInformation,
    StandardLoggingPayloadStatus,
    StandardLoggingPromptManagementMetadata,
    StandardLoggingVectorStoreRequest,
    TextCompletionResponse,
    TranscriptionResponse,
    Usage,
)
from litellm.utils import _get_base_model_from_metadata, executor, print_verbose

from ..integrations.argilla import ArgillaLogger
from ..integrations.arize.arize_phoenix import ArizePhoenixLogger
from ..integrations.athina import AthinaLogger
from ..integrations.azure_storage.azure_storage import AzureBlobStorageLogger
from ..integrations.custom_prompt_management import CustomPromptManagement
from ..integrations.datadog.datadog import DataDogLogger
from ..integrations.datadog.datadog_llm_obs import DataDogLLMObsLogger
from ..integrations.dynamodb import DyanmoDBLogger
from ..integrations.galileo import GalileoObserve
from ..integrations.gcs_bucket.gcs_bucket import GCSBucketLogger
from ..integrations.gcs_pubsub.pub_sub import GcsPubSubLogger
from ..integrations.greenscale import GreenscaleLogger
from ..integrations.helicone import HeliconeLogger
from ..integrations.humanloop import HumanloopLogger
from ..integrations.lago import LagoLogger
from ..integrations.langfuse.langfuse import LangFuseLogger
from ..integrations.langfuse.langfuse_handler import LangFuseHandler
from ..integrations.langfuse.langfuse_otel import LangfuseOtelLogger
from ..integrations.langfuse.langfuse_prompt_management import LangfusePromptManagement
from ..integrations.langsmith import LangsmithLogger
from ..integrations.literal_ai import LiteralAILogger
from ..integrations.logfire_logger import LogfireLevel, LogfireLogger
from ..integrations.lunary import LunaryLogger
from ..integrations.openmeter import OpenMeterLogger
from ..integrations.opik.opik import OpikLogger
from ..integrations.prompt_layer import PromptLayerLogger
from ..integrations.s3 import S3Logger
from ..integrations.s3_v2 import S3Logger as S3V2Logger
from ..integrations.supabase import Supabase
from ..integrations.traceloop import TraceloopLogger
from .exception_mapping_utils import _get_response_headers
from .initialize_dynamic_callback_params import (
    initialize_standard_callback_dynamic_params as _initialize_standard_callback_dynamic_params,
)
from .specialty_caches.dynamic_logging_cache import DynamicLoggingCache

if TYPE_CHECKING:
    from litellm.llms.base_llm.passthrough.transformation import BasePassthroughConfig
try:
    from litellm_enterprise.enterprise_callbacks.callback_controls import (
        EnterpriseCallbackControls,
    )
    from litellm_enterprise.enterprise_callbacks.generic_api_callback import (
        GenericAPILogger,
    )
    from litellm_enterprise.enterprise_callbacks.pagerduty.pagerduty import (
        PagerDutyAlerting,
    )
    from litellm_enterprise.enterprise_callbacks.send_emails.resend_email import (
        ResendEmailLogger,
    )
    from litellm_enterprise.enterprise_callbacks.send_emails.smtp_email import (
        SMTPEmailLogger,
    )
    from litellm_enterprise.litellm_core_utils.litellm_logging import (
        StandardLoggingPayloadSetup as EnterpriseStandardLoggingPayloadSetup,
    )
    from litellm_enterprise.integrations.prometheus import PrometheusLogger


    EnterpriseStandardLoggingPayloadSetupVAR: Optional[
        Type[EnterpriseStandardLoggingPayloadSetup]
    ] = EnterpriseStandardLoggingPayloadSetup
except Exception as e:
    verbose_logger.debug(
        f"[Non-Blocking] Unable to import GenericAPILogger - LiteLLM Enterprise Feature - {str(e)}"
    )
    GenericAPILogger = CustomLogger  # type: ignore
    ResendEmailLogger = CustomLogger  # type: ignore
    SMTPEmailLogger = CustomLogger  # type: ignore
    PagerDutyAlerting = CustomLogger  # type: ignore
    EnterpriseCallbackControls = None  # type: ignore
    EnterpriseStandardLoggingPayloadSetupVAR = None
    PrometheusLogger = None
_in_memory_loggers: List[Any] = []

### GLOBAL VARIABLES ###

sentry_sdk_instance = None
capture_exception = None
add_breadcrumb = None
posthog = None
slack_app = None
alerts_channel = None
heliconeLogger = None
athinaLogger = None
promptLayerLogger = None
logfireLogger = None
weightsBiasesLogger = None
customLogger = None
langFuseLogger = None
openMeterLogger = None
lagoLogger = None
dataDogLogger = None
prometheusLogger = None
dynamoLogger = None
s3Logger = None
greenscaleLogger = None
lunaryLogger = None
supabaseClient = None
deepevalLogger = None
callback_list: Optional[List[str]] = []
user_logger_fn = None
additional_details: Optional[Dict[str, str]] = {}
local_cache: Optional[Dict[str, str]] = {}
last_fetched_at = None
last_fetched_at_keys = None


####
class ServiceTraceIDCache:
    def __init__(self) -> None:
        self.cache = InMemoryCache()

    def get_cache(self, litellm_call_id: str, service_name: str) -> Optional[str]:
        key_name = "{}:{}".format(service_name, litellm_call_id)
        response = self.cache.get_cache(key=key_name)
        return response

    def set_cache(self, litellm_call_id: str, service_name: str, trace_id: str) -> None:
        key_name = "{}:{}".format(service_name, litellm_call_id)
        self.cache.set_cache(key=key_name, value=trace_id)
        return None


in_memory_trace_id_cache = ServiceTraceIDCache()
in_memory_dynamic_logger_cache = DynamicLoggingCache()


class Logging(LiteLLMLoggingBaseClass):
    global supabaseClient, promptLayerLogger, weightsBiasesLogger, logfireLogger, capture_exception, add_breadcrumb, lunaryLogger, logfireLogger, prometheusLogger, slack_app
    custom_pricing: bool = False
    stream_options = None

    def __init__(
        self,
        model: str,
        messages,
        stream,
        call_type,
        start_time,
        litellm_call_id: str,
        function_id: str,
        litellm_trace_id: Optional[str] = None,
        dynamic_input_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_async_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        dynamic_async_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None,
        applied_guardrails: Optional[List[str]] = None,
        kwargs: Optional[Dict] = None,
        log_raw_request_response: bool = False,
    ):
        _input: Optional[str] = messages  # save original value of messages
        if messages is not None:
            if isinstance(messages, str):
                messages = [
                    {"role": "user", "content": messages}
                ]  # convert text completion input to the chat completion format
            elif (
                isinstance(messages, list)
                and len(messages) > 0
                and isinstance(messages[0], str)
            ):
                new_messages = []
                for m in messages:
                    new_messages.append({"role": "user", "content": m})
                messages = new_messages
        self.model = model
        self.messages = copy.deepcopy(messages)
        self.stream = stream
        self.start_time = start_time  # log the call start time
        self.call_type = call_type
        self.litellm_call_id = litellm_call_id
        self.litellm_trace_id: str = litellm_trace_id or str(uuid.uuid4())
        self.function_id = function_id
        self.streaming_chunks: List[Any] = []  # for generating complete stream response
        self.sync_streaming_chunks: List[Any] = (
            []
        )  # for generating complete stream response
        self.log_raw_request_response = log_raw_request_response

        # Initialize dynamic callbacks
        self.dynamic_input_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_input_callbacks
        self.dynamic_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_success_callbacks
        self.dynamic_async_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_async_success_callbacks
        self.dynamic_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_failure_callbacks
        self.dynamic_async_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = dynamic_async_failure_callbacks

        # Process dynamic callbacks
        self.process_dynamic_callbacks()

        ## DYNAMIC LANGFUSE / GCS / logging callback KEYS ##
        self.standard_callback_dynamic_params: StandardCallbackDynamicParams = (
            self.initialize_standard_callback_dynamic_params(kwargs)
        )
        self.standard_built_in_tools_params: StandardBuiltInToolsParams = (
            self.initialize_standard_built_in_tools_params(kwargs)
        )
        ## TIME TO FIRST TOKEN LOGGING ##
        self.completion_start_time: Optional[datetime.datetime] = None
        self._llm_caching_handler: Optional[LLMCachingHandler] = None

        # INITIAL LITELLM_PARAMS
        litellm_params = {}
        if kwargs is not None:
            litellm_params = get_litellm_params(**kwargs)
            litellm_params = scrub_sensitive_keys_in_metadata(litellm_params)

        self.litellm_params = litellm_params

        self.model_call_details: Dict[str, Any] = {
            "litellm_trace_id": litellm_trace_id,
            "litellm_call_id": litellm_call_id,
            "input": _input,
            "litellm_params": litellm_params,
            "applied_guardrails": applied_guardrails,
            "model": model,
        }

    def process_dynamic_callbacks(self):
        """
        Initializes CustomLogger compatible callbacks in self.dynamic_* callbacks

        If a callback is in litellm._known_custom_logger_compatible_callbacks, it needs to be intialized and added to the respective dynamic_* callback list.
        """
        # Process input callbacks
        self.dynamic_input_callbacks = self._process_dynamic_callback_list(
            self.dynamic_input_callbacks, dynamic_callbacks_type="input"
        )

        # Process failure callbacks
        self.dynamic_failure_callbacks = self._process_dynamic_callback_list(
            self.dynamic_failure_callbacks, dynamic_callbacks_type="failure"
        )

        # Process async failure callbacks
        self.dynamic_async_failure_callbacks = self._process_dynamic_callback_list(
            self.dynamic_async_failure_callbacks, dynamic_callbacks_type="async_failure"
        )

        # Process success callbacks
        self.dynamic_success_callbacks = self._process_dynamic_callback_list(
            self.dynamic_success_callbacks, dynamic_callbacks_type="success"
        )

        # Process async success callbacks
        self.dynamic_async_success_callbacks = self._process_dynamic_callback_list(
            self.dynamic_async_success_callbacks, dynamic_callbacks_type="async_success"
        )

    def _process_dynamic_callback_list(
        self,
        callback_list: Optional[List[Union[str, Callable, CustomLogger]]],
        dynamic_callbacks_type: Literal[
            "input", "success", "failure", "async_success", "async_failure"
        ],
    ) -> Optional[List[Union[str, Callable, CustomLogger]]]:
        """
        Helper function to initialize CustomLogger compatible callbacks in self.dynamic_* callbacks

        - If a callback is in litellm._known_custom_logger_compatible_callbacks,
        replace the string with the initialized callback class.
        - If dynamic callback is a "success" callback that is a known_custom_logger_compatible_callbacks then add it to dynamic_async_success_callbacks
        - If dynamic callback is a "failure" callback that is a known_custom_logger_compatible_callbacks then add it to dynamic_failure_callbacks
        """
        if callback_list is None:
            return None

        processed_list: List[Union[str, Callable, CustomLogger]] = []
        for callback in callback_list:
            if (
                isinstance(callback, str)
                and callback in litellm._known_custom_logger_compatible_callbacks
            ):
                callback_class = _init_custom_logger_compatible_class(
                    callback, internal_usage_cache=None, llm_router=None  # type: ignore
                )
                if callback_class is not None:
                    processed_list.append(callback_class)

                    # If processing dynamic_success_callbacks, add to dynamic_async_success_callbacks
                    if dynamic_callbacks_type == "success":
                        if self.dynamic_async_success_callbacks is None:
                            self.dynamic_async_success_callbacks = []
                        self.dynamic_async_success_callbacks.append(callback_class)
                    elif dynamic_callbacks_type == "failure":
                        if self.dynamic_async_failure_callbacks is None:
                            self.dynamic_async_failure_callbacks = []
                        self.dynamic_async_failure_callbacks.append(callback_class)
            else:
                processed_list.append(callback)
        return processed_list

    def initialize_standard_callback_dynamic_params(
        self, kwargs: Optional[Dict] = None
    ) -> StandardCallbackDynamicParams:
        """
        Initialize the standard callback dynamic params from the kwargs

        checks if langfuse_secret_key, gcs_bucket_name in kwargs and sets the corresponding attributes in StandardCallbackDynamicParams
        """

        return _initialize_standard_callback_dynamic_params(kwargs)

    def initialize_standard_built_in_tools_params(
        self, kwargs: Optional[Dict] = None
    ) -> StandardBuiltInToolsParams:
        """
        Initialize the standard built-in tools params from the kwargs

        checks if web_search_options in kwargs or tools and sets the corresponding attribute in StandardBuiltInToolsParams
        """
        return StandardBuiltInToolsParams(
            web_search_options=StandardBuiltInToolCostTracking._get_web_search_options(
                kwargs or {}
            ),
            file_search=StandardBuiltInToolCostTracking._get_file_search_tool_call(
                kwargs or {}
            ),
        )

    def update_environment_variables(
        self,
        litellm_params: Dict,
        optional_params: Dict,
        model: Optional[str] = None,
        user: Optional[str] = None,
        **additional_params,
    ):
        self.optional_params = optional_params
        if model is not None:
            self.model = model
        self.user = user
        self.litellm_params = {
            **self.litellm_params,
            **scrub_sensitive_keys_in_metadata(litellm_params),
        }
        self.logger_fn = litellm_params.get("logger_fn", None)
        verbose_logger.debug(f"self.optional_params: {self.optional_params}")

        self.model_call_details.update(
            {
                "model": self.model,
                "messages": self.messages,
                "optional_params": self.optional_params,
                "litellm_params": self.litellm_params,
                "start_time": self.start_time,
                "stream": self.stream,
                "user": user,
                "call_type": str(self.call_type),
                "litellm_call_id": self.litellm_call_id,
                "completion_start_time": self.completion_start_time,
                "standard_callback_dynamic_params": self.standard_callback_dynamic_params,
                **self.optional_params,
                **additional_params,
            }
        )

        ## check if stream options is set ##  - used by CustomStreamWrapper for easy instrumentation
        if "stream_options" in additional_params:
            self.stream_options = additional_params["stream_options"]
        ## check if custom pricing set ##
        custom_pricing_keys = CustomPricingLiteLLMParams.model_fields.keys()
        for key in custom_pricing_keys:
            if litellm_params.get(key) is not None:
                self.custom_pricing = True

        if "custom_llm_provider" in self.model_call_details:
            self.custom_llm_provider = self.model_call_details["custom_llm_provider"]

    def should_run_prompt_management_hooks(
        self,
        non_default_params: Dict,
        prompt_id: Optional[str] = None,
        tools: Optional[List[Dict]] = None,
    ) -> bool:
        """
        Return True if prompt management hooks should be run
        """
        if prompt_id:
            return True

        if self._should_run_prompt_management_hooks_without_prompt_id(
            non_default_params=non_default_params,
            tools=tools,
        ):
            return True

        return False

    def _should_run_prompt_management_hooks_without_prompt_id(
        self,
        non_default_params: Dict,
        tools: Optional[List[Dict]] = None,
    ) -> bool:
        """
        Certain prompt management hooks don't need a `prompt_id` to be passed in, they are triggered by dynamic params

        eg. AnthropicCacheControlHook and BedrockKnowledgeBaseHook both don't require a `prompt_id` to be passed in, they are triggered by dynamic params
        """
        for param in non_default_params:
            if param in DynamicPromptManagementParamLiteral.list_all_params():
                return True

        #############################################################################
        # Check if Vector Store / Knowledge Base hooks should be applied to the prompt
        #############################################################################
        if litellm.vector_store_registry is not None:
            if litellm.vector_store_registry.get_vector_store_to_run(
                non_default_params=non_default_params, tools=tools
            ):
                return True
        return False

    def get_chat_completion_prompt(
        self,
        model: str,
        messages: List[AllMessageValues],
        non_default_params: Dict,
        prompt_id: Optional[str],
        prompt_variables: Optional[dict],
        prompt_management_logger: Optional[CustomLogger] = None,
        prompt_label: Optional[str] = None,
        prompt_version: Optional[int] = None,
    ) -> Tuple[str, List[AllMessageValues], dict]:
        custom_logger = (
            prompt_management_logger
            or self.get_custom_logger_for_prompt_management(
                model=model, non_default_params=non_default_params
            )
        )

        if custom_logger:
            (
                model,
                messages,
                non_default_params,
            ) = custom_logger.get_chat_completion_prompt(
                model=model,
                messages=messages,
                non_default_params=non_default_params or {},
                prompt_id=prompt_id,
                prompt_variables=prompt_variables,
                dynamic_callback_params=self.standard_callback_dynamic_params,
                prompt_label=prompt_label,
                prompt_version=prompt_version,
            )
        self.messages = messages
        return model, messages, non_default_params

    async def async_get_chat_completion_prompt(
        self,
        model: str,
        messages: List[AllMessageValues],
        non_default_params: Dict,
        prompt_id: Optional[str],
        prompt_variables: Optional[dict],
        prompt_management_logger: Optional[CustomLogger] = None,
        tools: Optional[List[Dict]] = None,
        prompt_label: Optional[str] = None,
        prompt_version: Optional[int] = None,
    ) -> Tuple[str, List[AllMessageValues], dict]:
        custom_logger = (
            prompt_management_logger
            or self.get_custom_logger_for_prompt_management(
                model=model, 
                tools=tools,
                non_default_params=non_default_params
            )
        )

        if custom_logger:
            (
                model,
                messages,
                non_default_params,
            ) = await custom_logger.async_get_chat_completion_prompt(
                model=model,
                messages=messages,
                non_default_params=non_default_params or {},
                prompt_id=prompt_id,
                prompt_variables=prompt_variables,
                dynamic_callback_params=self.standard_callback_dynamic_params,
                litellm_logging_obj=self,
                tools=tools,
                prompt_label=prompt_label,
                prompt_version=prompt_version,
            )
        self.messages = messages
        return model, messages, non_default_params

    def get_custom_logger_for_prompt_management(
        self, model: str, non_default_params: Dict, tools: Optional[List[Dict]] = None
    ) -> Optional[CustomLogger]:
        """
        Get a custom logger for prompt management based on model name or available callbacks.

        Args:
            model: The model name to check for prompt management integration

        Returns:
            A CustomLogger instance if one is found, None otherwise
        """
        # First check if model starts with a known custom logger compatible callback
        for callback_name in litellm._known_custom_logger_compatible_callbacks:
            if model.startswith(callback_name):
                custom_logger = _init_custom_logger_compatible_class(
                    logging_integration=callback_name,
                    internal_usage_cache=None,
                    llm_router=None,
                )
                if custom_logger is not None:
                    self.model_call_details["prompt_integration"] = model.split("/")[0]
                    return custom_logger

        # Then check for any registered CustomPromptManagement loggers
        prompt_management_loggers = (
            litellm.logging_callback_manager.get_custom_loggers_for_type(
                callback_type=CustomPromptManagement
            )
        )

        if prompt_management_loggers:
            logger = prompt_management_loggers[0]
            self.model_call_details["prompt_integration"] = logger.__class__.__name__
            return logger

        if anthropic_cache_control_logger := AnthropicCacheControlHook.get_custom_logger_for_anthropic_cache_control_hook(
            non_default_params
        ):
            self.model_call_details["prompt_integration"] = (
                anthropic_cache_control_logger.__class__.__name__
            )
            return anthropic_cache_control_logger

        #########################################################
        # Vector Store / Knowledge Base hooks
        #########################################################
        if litellm.vector_store_registry is not None:
                
                vector_store_custom_logger = _init_custom_logger_compatible_class(
                    logging_integration="vector_store_pre_call_hook",
                    internal_usage_cache=None,
                    llm_router=None,
                )
                self.model_call_details["prompt_integration"] = (
                    vector_store_custom_logger.__class__.__name__
                )
                return vector_store_custom_logger

        return None

    def get_custom_logger_for_anthropic_cache_control_hook(
        self, non_default_params: Dict
    ) -> Optional[CustomLogger]:
        if non_default_params.get("cache_control_injection_points", None):
            custom_logger = _init_custom_logger_compatible_class(
                logging_integration="anthropic_cache_control_hook",
                internal_usage_cache=None,
                llm_router=None,
            )
            return custom_logger
        return None

    def _get_raw_request_body(self, data: Optional[Union[dict, str]]) -> dict:
        if data is None:
            return {"error": "Received empty dictionary for raw request body"}
        if isinstance(data, str):
            try:
                return json.loads(data)
            except Exception:
                return {
                    "error": "Unable to parse raw request body. Got - {}".format(data)
                }
        return data

    def _get_masked_api_base(self, api_base: str) -> str:
        if "key=" in api_base:
            # Find the position of "key=" in the string
            key_index = api_base.find("key=") + 4
            # Mask the last 5 characters after "key="
            masked_api_base = api_base[:key_index] + "*" * 5 + api_base[-4:]
        else:
            masked_api_base = api_base
        return str(masked_api_base)

    def _pre_call(self, input, api_key, model=None, additional_args={}):
        """
        Common helper function across the sync + async pre-call function
        """

        self.model_call_details["input"] = input
        self.model_call_details["api_key"] = api_key
        self.model_call_details["additional_args"] = additional_args
        self.model_call_details["log_event_type"] = "pre_api_call"
        if (
            model
        ):  # if model name was changes pre-call, overwrite the initial model call name with the new one
            self.model_call_details["model"] = model
        self.model_call_details["litellm_params"]["api_base"] = (
            self._get_masked_api_base(additional_args.get("api_base", ""))
        )

    def pre_call(self, input, api_key, model=None, additional_args={}):  # noqa: PLR0915
        # Log the exact input to the LLM API
        litellm.error_logs["PRE_CALL"] = locals()
        try:
            self._pre_call(
                input=input,
                api_key=api_key,
                model=model,
                additional_args=additional_args,
            )

            # User Logging -> if you pass in a custom logging function
            self._print_llm_call_debugging_log(
                api_base=additional_args.get("api_base", ""),
                headers=additional_args.get("headers", {}),
                additional_args=additional_args,
            )
            # log raw request to provider (like LangFuse) -- if opted in.
            if (
                self.log_raw_request_response is True
                or log_raw_request_response is True
            ):
                _litellm_params = self.model_call_details.get("litellm_params", {})
                _metadata = _litellm_params.get("metadata", {}) or {}
                try:
                    # [Non-blocking Extra Debug Information in metadata]
                    if turn_off_message_logging is True:
                        _metadata["raw_request"] = (
                            "redacted by litellm. \
                            'litellm.turn_off_message_logging=True'"
                        )
                    else:
                        curl_command = self._get_request_curl_command(
                            api_base=additional_args.get("api_base", ""),
                            headers=additional_args.get("headers", {}),
                            additional_args=additional_args,
                            data=additional_args.get("complete_input_dict", {}),
                        )

                        _metadata["raw_request"] = str(curl_command)
                        # split up, so it's easier to parse in the UI
                        self.model_call_details["raw_request_typed_dict"] = (
                            RawRequestTypedDict(
                                raw_request_api_base=str(
                                    additional_args.get("api_base") or ""
                                ),
                                raw_request_body=self._get_raw_request_body(
                                    additional_args.get("complete_input_dict", {})
                                ),
                                raw_request_headers=self._get_masked_headers(
                                    additional_args.get("headers", {}) or {},
                                    ignore_sensitive_headers=True,
                                ),
                                error=None,
                            )
                        )
                except Exception as e:
                    self.model_call_details["raw_request_typed_dict"] = (
                        RawRequestTypedDict(
                            error=str(e),
                        )
                    )
                    _metadata["raw_request"] = (
                        "Unable to Log \
                        raw request: {}".format(
                            str(e)
                        )
                    )
            if self.logger_fn and callable(self.logger_fn):
                try:
                    self.logger_fn(
                        self.model_call_details
                    )  # Expectation: any logger function passed in by the user should accept a dict object
                except Exception as e:
                    verbose_logger.exception(
                        "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                            str(e)
                        )
                    )

            self.model_call_details["api_call_start_time"] = datetime.datetime.now()
            # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
            callbacks = litellm.input_callback + (self.dynamic_input_callbacks or [])
            for callback in callbacks:
                try:
                    if callback == "supabase" and supabaseClient is not None:
                        verbose_logger.debug("reaches supabase for logging!")
                        model = self.model_call_details["model"]
                        messages = self.model_call_details["input"]
                        verbose_logger.debug(f"supabaseClient: {supabaseClient}")
                        supabaseClient.input_log_event(
                            model=model,
                            messages=messages,
                            end_user=self.model_call_details.get("user", "default"),
                            litellm_call_id=self.litellm_params["litellm_call_id"],
                            print_verbose=print_verbose,
                        )
                    elif callback == "sentry" and add_breadcrumb:
                        try:
                            details_to_log = copy.deepcopy(self.model_call_details)
                        except Exception:
                            details_to_log = self.model_call_details
                        if litellm.turn_off_message_logging:
                            # make a copy of the _model_Call_details and log it
                            details_to_log.pop("messages", None)
                            details_to_log.pop("input", None)
                            details_to_log.pop("prompt", None)

                        add_breadcrumb(
                            category="litellm.llm_call",
                            message=f"Model Call Details pre-call: {details_to_log}",
                            level="info",
                        )

                    elif isinstance(callback, CustomLogger):  # custom logger class
                        callback.log_pre_api_call(
                            model=self.model,
                            messages=self.messages,
                            kwargs=self.model_call_details,
                        )
                    elif (
                        callable(callback) and customLogger is not None
                    ):  # custom logger functions
                        customLogger.log_input_event(
                            model=self.model,
                            messages=self.messages,
                            kwargs=self.model_call_details,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )
                except Exception as e:
                    verbose_logger.exception(
                        "litellm.Logging.pre_call(): Exception occured - {}".format(
                            str(e)
                        )
                    )
                    verbose_logger.debug(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                    str(e)
                )
            )
            verbose_logger.error(
                f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
            )
            if capture_exception:  # log this error to sentry for debugging
                capture_exception(e)

    def _print_llm_call_debugging_log(
        self,
        api_base: str,
        headers: dict,
        additional_args: dict,
    ):
        """
        Internal debugging helper function

        Prints the RAW curl command sent from LiteLLM
        """
        if _is_debugging_on():
            if json_logs:
                masked_headers = self._get_masked_headers(headers)
                verbose_logger.debug(
                    "POST Request Sent from LiteLLM",
                    extra={"api_base": {api_base}, **masked_headers},
                )
            else:
                headers = additional_args.get("headers", {})
                if headers is None:
                    headers = {}
                data = additional_args.get("complete_input_dict", {})
                api_base = str(additional_args.get("api_base", ""))
                curl_command = self._get_request_curl_command(
                    api_base=api_base,
                    headers=headers,
                    additional_args=additional_args,
                    data=data,
                )
                verbose_logger.debug(f"\033[92m{curl_command}\033[0m\n")

    def _get_request_body(self, data: dict) -> str:
        return str(data)

    def _get_request_curl_command(
        self, api_base: str, headers: Optional[dict], additional_args: dict, data: dict
    ) -> str:
        masked_api_base = self._get_masked_api_base(api_base)
        if headers is None:
            headers = {}
        curl_command = "\n\nPOST Request Sent from LiteLLM:\n"
        curl_command += "curl -X POST \\\n"
        curl_command += f"{masked_api_base} \\\n"
        masked_headers = self._get_masked_headers(headers)
        formatted_headers = " ".join(
            [f"-H '{k}: {v}'" for k, v in masked_headers.items()]
        )
        curl_command += (
            f"{formatted_headers} \\\n" if formatted_headers.strip() != "" else ""
        )
        curl_command += f"-d '{self._get_request_body(data)}'\n"
        if additional_args.get("request_str", None) is not None:
            # print the sagemaker / bedrock client request
            curl_command = "\nRequest Sent from LiteLLM:\n"
            curl_command += additional_args.get("request_str", None)
        elif api_base == "":
            curl_command = str(self.model_call_details)
        return curl_command

    def _get_masked_headers(
        self, headers: dict, ignore_sensitive_headers: bool = False
    ) -> dict:
        """
        Internal debugging helper function

        Masks the headers of the request sent from LiteLLM
        """
        return _get_masked_values(
            headers, ignore_sensitive_values=ignore_sensitive_headers
        )

    def post_call(
        self, original_response, input=None, api_key=None, additional_args={}
    ):
        # Log the exact result from the LLM API, for streaming - log the type of response received
        litellm.error_logs["POST_CALL"] = locals()
        if isinstance(original_response, dict):
            original_response = json.dumps(original_response)
        try:
            self.model_call_details["input"] = input
            self.model_call_details["api_key"] = api_key
            self.model_call_details["original_response"] = original_response
            self.model_call_details["additional_args"] = additional_args
            self.model_call_details["log_event_type"] = "post_api_call"

            if json_logs:
                verbose_logger.debug(
                    "RAW RESPONSE:\n{}\n\n".format(
                        self.model_call_details.get(
                            "original_response", self.model_call_details
                        )
                    ),
                )
            else:
                print_verbose(
                    "RAW RESPONSE:\n{}\n\n".format(
                        self.model_call_details.get(
                            "original_response", self.model_call_details
                        )
                    )
                )
            if self.logger_fn and callable(self.logger_fn):
                try:
                    self.logger_fn(
                        self.model_call_details
                    )  # Expectation: any logger function passed in by the user should accept a dict object
                except Exception as e:
                    verbose_logger.exception(
                        "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                            str(e)
                        )
                    )
            original_response = redact_message_input_output_from_logging(
                model_call_details=(
                    self.model_call_details
                    if hasattr(self, "model_call_details")
                    else {}
                ),
                result=original_response,
            )
            # Input Integration Logging -> If you want to log the fact that an attempt to call the model was made

            callbacks = litellm.input_callback + (self.dynamic_input_callbacks or [])
            for callback in callbacks:
                try:
                    if callback == "sentry" and add_breadcrumb:
                        verbose_logger.debug("reaches sentry breadcrumbing")
                        try:
                            details_to_log = copy.deepcopy(self.model_call_details)
                        except Exception:
                            details_to_log = self.model_call_details
                        if litellm.turn_off_message_logging:
                            # make a copy of the _model_Call_details and log it
                            details_to_log.pop("messages", None)
                            details_to_log.pop("input", None)
                            details_to_log.pop("prompt", None)

                        add_breadcrumb(
                            category="litellm.llm_call",
                            message=f"Model Call Details post-call: {details_to_log}",
                            level="info",
                        )
                    elif isinstance(callback, CustomLogger):  # custom logger class
                        callback.log_post_api_call(
                            kwargs=self.model_call_details,
                            response_obj=None,
                            start_time=self.start_time,
                            end_time=None,
                        )
                except Exception as e:
                    verbose_logger.exception(
                        "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {}".format(
                            str(e)
                        )
                    )
                    verbose_logger.debug(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                    str(e)
                )
            )

    async def async_post_mcp_tool_call_hook(
        self,
        kwargs: dict,
        response_obj: Any,
        start_time: datetime.datetime,
        end_time: datetime.datetime,
    ):
        """
        Post MCP Tool Call Hook

        Use this to modify the MCP tool call response before it is returned to the user.
        """
        from litellm.types.llms.base import HiddenParams
        from litellm.types.mcp import MCPPostCallResponseObject

        callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_success_callbacks,
            global_callbacks=litellm.success_callback,
        )
        post_mcp_tool_call_response_obj: MCPPostCallResponseObject = (
            MCPPostCallResponseObject(
                mcp_tool_call_response=response_obj, hidden_params=HiddenParams()
            )
        )
        for callback in callbacks:
            try:
                if isinstance(callback, CustomLogger):
                    response: Optional[MCPPostCallResponseObject] = (
                        await callback.async_post_mcp_tool_call_hook(
                            kwargs=kwargs,
                            response_obj=post_mcp_tool_call_response_obj,
                            start_time=start_time,
                            end_time=end_time,
                        )
                    )
                    ######################################################################
                    # if any of the callbacks modify the response, use the modified response
                    # current implementation returns the first modified response
                    ######################################################################
                    if response is not None:
                        response_obj = self._parse_post_mcp_call_hook_response(
                            response=response
                        )
            except Exception as e:
                verbose_logger.exception(
                    "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {}".format(
                        str(e)
                    )
                )
        return response_obj

    def _parse_post_mcp_call_hook_response(
        self, response: Optional[MCPPostCallResponseObject]
    ) -> Any:
        """
        Parse the response from the post_mcp_tool_call_hook

        1. Unpack the mcp_tool_call_response
        2. save the updated response_cost to the model_call_details
        """
        if response is None:
            return None
        self.model_call_details["response_cost"] = response.hidden_params.response_cost
        return response.mcp_tool_call_response

    def get_response_ms(self) -> float:
        return (
            self.model_call_details.get("end_time", datetime.datetime.now())
            - self.model_call_details.get("start_time", datetime.datetime.now())
        ).total_seconds() * 1000

    def _response_cost_calculator(
        self,
        result: Union[
            ModelResponse,
            ModelResponseStream,
            EmbeddingResponse,
            ImageResponse,
            TranscriptionResponse,
            TextCompletionResponse,
            HttpxBinaryResponseContent,
            RerankResponse,
            Batch,
            FineTuningJob,
            ResponsesAPIResponse,
            ResponseCompletedEvent,
            OpenAIFileObject,
            LiteLLMRealtimeStreamLoggingObject,
            OpenAIModerationResponse,
        ],
        cache_hit: Optional[bool] = None,
        litellm_model_name: Optional[str] = None,
        router_model_id: Optional[str] = None,
    ) -> Optional[float]:
        """
        Calculate response cost using result + logging object variables.

        used for consistent cost calculation across response headers + logging integrations.
        """

        if isinstance(result, BaseModel) and hasattr(result, "_hidden_params"):
            hidden_params = getattr(result, "_hidden_params", {})
            if (
                "response_cost" in hidden_params
                and hidden_params["response_cost"] is not None
            ):  # use cost if already calculated
                return hidden_params["response_cost"]
            elif (
                router_model_id is None and "model_id" in hidden_params
            ):  # use model_id if not already set
                router_model_id = hidden_params["model_id"]

        ## RESPONSE COST ##
        custom_pricing = use_custom_pricing_for_model(
            litellm_params=(
                self.litellm_params if hasattr(self, "litellm_params") else None
            )
        )

        prompt = ""  # use for tts cost calc
        _input = self.model_call_details.get("input", None)
        if _input is not None and isinstance(_input, str):
            prompt = _input

        if cache_hit is None:
            cache_hit = self.model_call_details.get("cache_hit", False)

        try:
            response_cost_calculator_kwargs = {
                "response_object": result,
                "model": litellm_model_name or self.model,
                "cache_hit": cache_hit,
                "custom_llm_provider": self.model_call_details.get(
                    "custom_llm_provider", None
                ),
                "base_model": _get_base_model_from_metadata(
                    model_call_details=self.model_call_details
                ),
                "call_type": self.call_type,
                "optional_params": self.optional_params,
                "custom_pricing": custom_pricing,
                "prompt": prompt,
                "standard_built_in_tools_params": self.standard_built_in_tools_params,
                "router_model_id": router_model_id,
                "litellm_logging_obj": self,
            }
        except Exception as e:  # error creating kwargs for cost calculation
            debug_info = StandardLoggingModelCostFailureDebugInformation(
                error_str=str(e),
                traceback_str=_get_traceback_str_for_error(str(e)),
            )
            verbose_logger.debug(
                f"response_cost_failure_debug_information: {debug_info}"
            )
            self.model_call_details["response_cost_failure_debug_information"] = (
                debug_info
            )
            return None

        try:
            response_cost = litellm.response_cost_calculator(
                **response_cost_calculator_kwargs
            )
            verbose_logger.debug(f"response_cost: {response_cost}")
            return response_cost
        except Exception as e:  # error calculating cost
            debug_info = StandardLoggingModelCostFailureDebugInformation(
                error_str=str(e),
                traceback_str=_get_traceback_str_for_error(str(e)),
                model=response_cost_calculator_kwargs["model"],
                cache_hit=response_cost_calculator_kwargs["cache_hit"],
                custom_llm_provider=response_cost_calculator_kwargs[
                    "custom_llm_provider"
                ],
                base_model=response_cost_calculator_kwargs["base_model"],
                call_type=response_cost_calculator_kwargs["call_type"],
                custom_pricing=response_cost_calculator_kwargs["custom_pricing"],
            )
            verbose_logger.debug(
                f"response_cost_failure_debug_information: {debug_info}"
            )
            self.model_call_details["response_cost_failure_debug_information"] = (
                debug_info
            )

        return None

    async def _response_cost_calculator_async(
        self,
        result: Union[
            ModelResponse,
            ModelResponseStream,
            EmbeddingResponse,
            ImageResponse,
            TranscriptionResponse,
            TextCompletionResponse,
            HttpxBinaryResponseContent,
            RerankResponse,
            Batch,
            FineTuningJob,
        ],
        cache_hit: Optional[bool] = None,
    ) -> Optional[float]:
        return self._response_cost_calculator(result=result, cache_hit=cache_hit)

    def should_run_logging(
        self,
        event_type: Literal[
            "async_success", "sync_success", "async_failure", "sync_failure"
        ],
        stream: bool = False,
    ) -> bool:
        try:
            if self.model_call_details.get(f"has_logged_{event_type}", False) is True:
                return False

            return True
        except Exception:
            return True

    def has_run_logging(
        self,
        event_type: Literal[
            "async_success", "sync_success", "async_failure", "sync_failure"
        ],
    ) -> None:
        if self.stream is not None and self.stream is True:
            """
            Ignore check on stream, as there can be multiple chunks
            """
            return
        self.model_call_details[f"has_logged_{event_type}"] = True
        return

    def should_run_callback(
        self, callback: litellm.CALLBACK_TYPES, litellm_params: dict, event_hook: str
    ) -> bool:
        if litellm.global_disable_no_log_param:
            return True

        if litellm_params.get("no-log", False) is True:
            # proxy cost tracking cal backs should run

            if not (
                isinstance(callback, CustomLogger)
                and "_PROXY_" in callback.__class__.__name__
            ):
                verbose_logger.debug(
                    f"no-log request, skipping logging for {event_hook} event"
                )
                return False

        # Check for dynamically disabled callbacks via headers
        if (
            EnterpriseCallbackControls is not None
            and EnterpriseCallbackControls.is_callback_disabled_dynamically(
                callback=callback, 
                litellm_params=litellm_params,
                standard_callback_dynamic_params = self.standard_callback_dynamic_params
            )
        ):
            verbose_logger.debug(
                f"Callback {callback} disabled via x-litellm-disable-callbacks header for {event_hook} event"
            )
            return False

        return True

    def _update_completion_start_time(self, completion_start_time: datetime.datetime):
        self.completion_start_time = completion_start_time
        self.model_call_details["completion_start_time"] = self.completion_start_time

    def normalize_logging_result(self, result: Any) -> Any:
        """
        Some endpoints return a different type of result than what is expected by the logging system.
        This function is used to normalize the result to the expected type.
        """
        logging_result = result
        if self.call_type == CallTypes.arealtime.value and isinstance(result, list):
            combined_usage_object = RealtimeAPITokenUsageProcessor.collect_and_combine_usage_from_realtime_stream_results(
                results=result
            )
            logging_result = (
                RealtimeAPITokenUsageProcessor.create_logging_realtime_object(
                    usage=combined_usage_object,
                    results=result,
                )
            )

        elif (
            self.call_type == CallTypes.llm_passthrough_route.value
            or self.call_type == CallTypes.allm_passthrough_route.value
        ) and isinstance(result, Response):
            from litellm.utils import ProviderConfigManager

            provider_config = ProviderConfigManager.get_provider_passthrough_config(
                provider=self.model_call_details.get("custom_llm_provider", ""),
                model=self.model,
            )
            if provider_config is not None:
                logging_result = provider_config.logging_non_streaming_response(
                    model=self.model,
                    custom_llm_provider=self.model_call_details.get(
                        "custom_llm_provider", ""
                    ),
                    httpx_response=result,
                    request_data=self.model_call_details.get("request_data", {}),
                    logging_obj=self,
                    endpoint=self.model_call_details.get("endpoint", ""),
                )
        return logging_result

    def _success_handler_helper_fn(
        self,
        result=None,
        start_time=None,
        end_time=None,
        cache_hit=None,
        standard_logging_object: Optional[StandardLoggingPayload] = None,
    ):
        try:
            if start_time is None:
                start_time = self.start_time
            if end_time is None:
                end_time = datetime.datetime.now()
            if self.completion_start_time is None:
                self.completion_start_time = end_time
                self.model_call_details["completion_start_time"] = (
                    self.completion_start_time
                )
            self.model_call_details["log_event_type"] = "successful_api_call"
            self.model_call_details["end_time"] = end_time
            self.model_call_details["cache_hit"] = cache_hit
            if self.call_type == CallTypes.anthropic_messages.value:
                result = self._handle_anthropic_messages_response_logging(result=result)
            elif (
                self.call_type == CallTypes.generate_content.value
                or self.call_type == CallTypes.agenerate_content.value
            ):
                result = self._handle_non_streaming_google_genai_generate_content_response_logging(
                    result=result
                )
            ## if model in model cost map - log the response cost
            ## else set cost to None

            logging_result = self.normalize_logging_result(result=result)

            if (
                standard_logging_object is None
                and result is not None
                and self.stream is not True
            ):
                if self._is_recognized_call_type_for_logging(
                    logging_result=logging_result
                ):
                    ## HIDDEN PARAMS ##
                    hidden_params = getattr(logging_result, "_hidden_params", {})
                    if hidden_params:
                        # add to metadata for logging
                        if self.model_call_details.get("litellm_params") is not None:
                            self.model_call_details["litellm_params"].setdefault(
                                "metadata", {}
                            )
                            if (
                                self.model_call_details["litellm_params"]["metadata"]
                                is None
                            ):
                                self.model_call_details["litellm_params"][
                                    "metadata"
                                ] = {}

                            self.model_call_details["litellm_params"]["metadata"][  # type: ignore
                                "hidden_params"
                            ] = getattr(
                                logging_result, "_hidden_params", {}
                            )
                    ## RESPONSE COST - Only calculate if not in hidden_params ##
                    if "response_cost" in hidden_params:
                        self.model_call_details["response_cost"] = hidden_params[
                            "response_cost"
                        ]
                    else:
                        self.model_call_details["response_cost"] = (
                            self._response_cost_calculator(result=logging_result)
                        )
                    ## STANDARDIZED LOGGING PAYLOAD

                    self.model_call_details["standard_logging_object"] = (
                        get_standard_logging_object_payload(
                            kwargs=self.model_call_details,
                            init_response_obj=logging_result,
                            start_time=start_time,
                            end_time=end_time,
                            logging_obj=self,
                            status="success",
                            standard_built_in_tools_params=self.standard_built_in_tools_params,
                        )
                    )
                elif isinstance(result, dict) or isinstance(result, list):
                    ## STANDARDIZED LOGGING PAYLOAD
                    self.model_call_details["standard_logging_object"] = (
                        get_standard_logging_object_payload(
                            kwargs=self.model_call_details,
                            init_response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            logging_obj=self,
                            status="success",
                            standard_built_in_tools_params=self.standard_built_in_tools_params,
                        )
                    )
            elif standard_logging_object is not None:
                self.model_call_details["standard_logging_object"] = (
                    standard_logging_object
                )
            else:  # streaming chunks + image gen.
                self.model_call_details["response_cost"] = None

            ## RESPONSES API USAGE OBJECT TRANSFORMATION ##
            # MAP RESPONSES API USAGE OBJECT TO LITELLM USAGE OBJECT
            if isinstance(result, ResponsesAPIResponse):
                result = result.model_copy()
                setattr(
                    result,
                    "usage",
                    ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage(
                        result.usage
                    ),
                )

            if (
                litellm.max_budget
                and self.stream is False
                and result is not None
                and isinstance(result, dict)
                and "content" in result
            ):
                time_diff = (end_time - start_time).total_seconds()
                float_diff = float(time_diff)
                litellm._current_cost += litellm.completion_cost(
                    model=self.model,
                    prompt="",
                    completion=getattr(result, "content", ""),
                    total_time=float_diff,
                    standard_built_in_tools_params=self.standard_built_in_tools_params,
                )

            return start_time, end_time, result
        except Exception as e:
            raise Exception(f"[Non-Blocking] LiteLLM.Success_Call Error: {str(e)}")

    def _is_recognized_call_type_for_logging(
        self,
        logging_result: Any,
    ):
        """
        Returns True if the call type is recognized for logging (eg. ModelResponse, ModelResponseStream, etc.)
        """
        if (
            isinstance(logging_result, ModelResponse)
            or isinstance(logging_result, ModelResponseStream)
            or isinstance(logging_result, EmbeddingResponse)
            or isinstance(logging_result, ImageResponse)
            or isinstance(logging_result, TranscriptionResponse)
            or isinstance(logging_result, TextCompletionResponse)
            or isinstance(logging_result, HttpxBinaryResponseContent)  # tts
            or isinstance(logging_result, RerankResponse)
            or isinstance(logging_result, FineTuningJob)
            or isinstance(logging_result, LiteLLMBatch)
            or isinstance(logging_result, ResponsesAPIResponse)
            or isinstance(logging_result, OpenAIFileObject)
            or isinstance(logging_result, LiteLLMRealtimeStreamLoggingObject)
            or isinstance(logging_result, OpenAIModerationResponse)
            or (self.call_type == CallTypes.call_mcp_tool.value)
        ):
            return True
        return False

    def _flush_passthrough_collected_chunks_helper(
        self,
        raw_bytes: List[bytes],
        provider_config: "BasePassthroughConfig",
    ) -> Optional["CostResponseTypes"]:
        all_chunks = provider_config._convert_raw_bytes_to_str_lines(raw_bytes)
        complete_streaming_response = provider_config.handle_logging_collected_chunks(
            all_chunks=all_chunks,
            litellm_logging_obj=self,
            model=self.model,
            custom_llm_provider=self.model_call_details.get("custom_llm_provider", ""),
            endpoint=self.model_call_details.get("endpoint", ""),
        )
        return complete_streaming_response

    def flush_passthrough_collected_chunks(
        self,
        raw_bytes: List[bytes],
        provider_config: "BasePassthroughConfig",
    ):
        """
        Flush collected chunks from the logging object
        This is used to log the collected chunks once streaming is done on passthrough endpoints

        1. Decode the raw bytes to string lines
        2. Get the complete streaming response from the provider config
        3. Log the complete streaming response (trigger success handler)
        This is used for passthrough endpoints
        """
        complete_streaming_response = self._flush_passthrough_collected_chunks_helper(
            raw_bytes=raw_bytes,
            provider_config=provider_config,
        )

        if complete_streaming_response is not None:

            self.success_handler(result=complete_streaming_response)
        return

    async def async_flush_passthrough_collected_chunks(
        self,
        raw_bytes: List[bytes],
        provider_config: "BasePassthroughConfig",
    ):
        complete_streaming_response = self._flush_passthrough_collected_chunks_helper(
            raw_bytes=raw_bytes,
            provider_config=provider_config,
        )

        if complete_streaming_response is not None:
            await self.async_success_handler(result=complete_streaming_response)
        return

    def success_handler(  # noqa: PLR0915
        self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
    ):
        verbose_logger.debug(
            f"Logging Details LiteLLM-Success Call: Cache_hit={cache_hit}"
        )
        if not self.should_run_logging(
            event_type="sync_success"
        ):  # prevent double logging
            return
        start_time, end_time, result = self._success_handler_helper_fn(
            start_time=start_time,
            end_time=end_time,
            result=result,
            cache_hit=cache_hit,
            standard_logging_object=kwargs.get("standard_logging_object", None),
        )
        try:
            ## BUILD COMPLETE STREAMED RESPONSE
            complete_streaming_response: Optional[
                Union[ModelResponse, TextCompletionResponse, ResponsesAPIResponse]
            ] = None
            if "complete_streaming_response" in self.model_call_details:
                return  # break out of this.
            complete_streaming_response = self._get_assembled_streaming_response(
                result=result,
                start_time=start_time,
                end_time=end_time,
                is_async=False,
                streaming_chunks=self.sync_streaming_chunks,
            )
            if complete_streaming_response is not None:
                verbose_logger.debug(
                    "Logging Details LiteLLM-Success Call streaming complete"
                )
                self.model_call_details["complete_streaming_response"] = (
                    complete_streaming_response
                )
                self.model_call_details["response_cost"] = (
                    self._response_cost_calculator(result=complete_streaming_response)
                )
                ## STANDARDIZED LOGGING PAYLOAD
                self.model_call_details["standard_logging_object"] = (
                    get_standard_logging_object_payload(
                        kwargs=self.model_call_details,
                        init_response_obj=complete_streaming_response,
                        start_time=start_time,
                        end_time=end_time,
                        logging_obj=self,
                        status="success",
                        standard_built_in_tools_params=self.standard_built_in_tools_params,
                    )
                )
            callbacks = self.get_combined_callback_list(
                dynamic_success_callbacks=self.dynamic_success_callbacks,
                global_callbacks=litellm.success_callback,
            )

            ## REDACT MESSAGES ##
            result = redact_message_input_output_from_logging(
                model_call_details=(
                    self.model_call_details
                    if hasattr(self, "model_call_details")
                    else {}
                ),
                result=result,
            )
            ## LOGGING HOOK ##
            for callback in callbacks:
                if isinstance(callback, CustomLogger):
                    self.model_call_details, result = callback.logging_hook(
                        kwargs=self.model_call_details,
                        result=result,
                        call_type=self.call_type,
                    )

            self.has_run_logging(event_type="sync_success")
            for callback in callbacks:
                try:
                    litellm_params = self.model_call_details.get("litellm_params", {})
                    should_run = self.should_run_callback(
                        callback=callback,
                        litellm_params=litellm_params,
                        event_hook="success_handler",
                    )
                    if not should_run:
                        continue
                    if callback == "promptlayer" and promptLayerLogger is not None:
                        print_verbose("reaches promptlayer for logging!")
                        promptLayerLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "supabase" and supabaseClient is not None:
                        print_verbose("reaches supabase for logging!")
                        kwargs = self.model_call_details

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                print_verbose("reaches supabase for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        model = kwargs["model"]
                        messages = kwargs["messages"]
                        optional_params = kwargs.get("optional_params", {})
                        litellm_params = kwargs.get("litellm_params", {})
                        supabaseClient.log_event(
                            model=model,
                            messages=messages,
                            end_user=optional_params.get("user", "default"),
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            litellm_call_id=litellm_params.get(
                                "litellm_call_id", str(uuid.uuid4())
                            ),
                            print_verbose=print_verbose,
                        )
                    if callback == "wandb" and weightsBiasesLogger is not None:
                        print_verbose("reaches wandb for logging!")
                        weightsBiasesLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "logfire" and logfireLogger is not None:
                        verbose_logger.debug("reaches logfire for success logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                print_verbose("reaches logfire for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        logfireLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            level=LogfireLevel.INFO.value,  # type: ignore
                        )

                    if callback == "lunary" and lunaryLogger is not None:
                        print_verbose("reaches lunary for logging!")
                        model = self.model
                        kwargs = self.model_call_details

                        input = kwargs.get("messages", kwargs.get("input", None))

                        type = (
                            "embed"
                            if self.call_type == CallTypes.embedding.value
                            else "llm"
                        )

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                result = kwargs["complete_streaming_response"]

                        lunaryLogger.log_event(
                            type=type,
                            kwargs=kwargs,
                            event="end",
                            model=model,
                            input=input,
                            user_id=kwargs.get("user", None),
                            # user_props=self.model_call_details.get("user_props", None),
                            extra=kwargs.get("optional_params", {}),
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            run_id=self.litellm_call_id,
                            print_verbose=print_verbose,
                        )
                    if callback == "helicone" and heliconeLogger is not None:
                        print_verbose("reaches helicone for logging!")
                        model = self.model
                        messages = self.model_call_details["input"]
                        kwargs = self.model_call_details

                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            if "complete_streaming_response" not in kwargs:
                                continue
                            else:
                                print_verbose("reaches helicone for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        heliconeLogger.log_success(
                            model=model,
                            messages=messages,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            kwargs=kwargs,
                        )
                    if callback == "langfuse":
                        global langFuseLogger
                        print_verbose("reaches langfuse for success logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            verbose_logger.debug(
                                f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}"
                            )
                            if complete_streaming_response is None:
                                continue
                            else:
                                print_verbose("reaches langfuse for streaming logging!")
                                result = kwargs["complete_streaming_response"]

                        langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
                            globalLangfuseLogger=langFuseLogger,
                            standard_callback_dynamic_params=self.standard_callback_dynamic_params,
                            in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
                        )
                        if langfuse_logger_to_use is not None:
                            _response = langfuse_logger_to_use.log_event_on_langfuse(
                                kwargs=kwargs,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                                user_id=kwargs.get("user", None),
                            )
                            if _response is not None and isinstance(_response, dict):
                                _trace_id = _response.get("trace_id", None)
                                if _trace_id is not None:
                                    in_memory_trace_id_cache.set_cache(
                                        litellm_call_id=self.litellm_call_id,
                                        service_name="langfuse",
                                        trace_id=_trace_id,
                                    )
                    if callback == "greenscale" and greenscaleLogger is not None:
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        if self.stream:
                            verbose_logger.debug(
                                f"is complete_streaming_response in kwargs: {kwargs.get('complete_streaming_response', None)}"
                            )
                            if complete_streaming_response is None:
                                continue
                            else:
                                print_verbose(
                                    "reaches greenscale for streaming logging!"
                                )
                                result = kwargs["complete_streaming_response"]

                        greenscaleLogger.log_event(
                            kwargs=kwargs,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "athina" and athinaLogger is not None:
                        deep_copy = {}
                        for k, v in self.model_call_details.items():
                            deep_copy[k] = v
                        athinaLogger.log_event(
                            kwargs=deep_copy,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "traceloop":
                        deep_copy = {}
                        for k, v in self.model_call_details.items():
                            if k != "original_response":
                                deep_copy[k] = v
                        traceloopLogger.log_event(
                            kwargs=deep_copy,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            user_id=kwargs.get("user", None),
                            print_verbose=print_verbose,
                        )
                    if callback == "s3":
                        global s3Logger
                        if s3Logger is None:
                            s3Logger = S3Logger()
                        if self.stream:
                            if "complete_streaming_response" in self.model_call_details:
                                print_verbose(
                                    "S3Logger Logger: Got Stream Event - Completed Stream Response"
                                )
                                s3Logger.log_event(
                                    kwargs=self.model_call_details,
                                    response_obj=self.model_call_details[
                                        "complete_streaming_response"
                                    ],
                                    start_time=start_time,
                                    end_time=end_time,
                                    print_verbose=print_verbose,
                                )
                            else:
                                print_verbose(
                                    "S3Logger Logger: Got Stream Event - No complete stream response as yet"
                                )
                        else:
                            s3Logger.log_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                                print_verbose=print_verbose,
                            )

                    if (
                        callback == "openmeter"
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aimage_generation", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "atranscription", False
                        )
                        is not True
                    ):
                        global openMeterLogger
                        if openMeterLogger is None:
                            print_verbose("Instantiates openmeter client")
                            openMeterLogger = OpenMeterLogger()
                        if self.stream and complete_streaming_response is None:
                            openMeterLogger.log_stream_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            if self.stream and complete_streaming_response:
                                self.model_call_details["complete_response"] = (
                                    self.model_call_details.get(
                                        "complete_streaming_response", {}
                                    )
                                )
                                result = self.model_call_details["complete_response"]
                            openMeterLogger.log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    if (
                        isinstance(callback, CustomLogger)
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aimage_generation", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "atranscription", False
                        )
                        is not True
                        and self.call_type
                        != CallTypes.pass_through.value  # pass-through endpoints call async_log_success_event
                    ):  # custom logger class
                        if self.stream and complete_streaming_response is None:
                            callback.log_stream_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            if self.stream and complete_streaming_response:
                                self.model_call_details["complete_response"] = (
                                    self.model_call_details.get(
                                        "complete_streaming_response", {}
                                    )
                                )
                                result = self.model_call_details["complete_response"]

                            callback.log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    if (
                        callable(callback) is True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aimage_generation", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "atranscription", False
                        )
                        is not True
                        and customLogger is not None
                    ):  # custom logger functions
                        print_verbose(
                            "success callbacks: Running Custom Callback Function - {}".format(
                                callback
                            )
                        )

                        customLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )

                except Exception as e:
                    print_verbose(
                        f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}"
                    )
                    print_verbose(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {}".format(
                    str(e)
                ),
            )

    async def async_success_handler(  # noqa: PLR0915
        self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
    ):
        """
        Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
        """
        print_verbose(
            "Logging Details LiteLLM-Async Success Call, cache_hit={}".format(cache_hit)
        )
        if not self.should_run_logging(
            event_type="async_success"
        ):  # prevent double logging
            return

        ## CALCULATE COST FOR BATCH JOBS
        if self.call_type == CallTypes.aretrieve_batch.value and isinstance(
            result, LiteLLMBatch
        ):
            litellm_params = self.litellm_params or {}
            litellm_metadata = litellm_params.get("litellm_metadata", {})
            if (
                litellm_metadata.get("batch_ignore_default_logging", False) is True
            ):  # polling job will query these frequently, don't spam db logs
                return

            from litellm.proxy.openai_files_endpoints.common_utils import (
                _is_base64_encoded_unified_file_id,
            )

            # check if file id is a unified file id
            is_base64_unified_file_id = _is_base64_encoded_unified_file_id(result.id)

            batch_cost = kwargs.get("batch_cost", None)
            batch_usage = kwargs.get("batch_usage", None)
            batch_models = kwargs.get("batch_models", None)
            if all([batch_cost, batch_usage, batch_models]) is not None:
                result._hidden_params["response_cost"] = batch_cost
                result._hidden_params["batch_models"] = batch_models
                result.usage = batch_usage

            elif not is_base64_unified_file_id:  # only run for non-unified file ids
                response_cost, batch_usage, batch_models = (
                    await _handle_completed_batch(
                        batch=result, custom_llm_provider=self.custom_llm_provider
                    )
                )

                result._hidden_params["response_cost"] = response_cost
                result._hidden_params["batch_models"] = batch_models
                result.usage = batch_usage

        start_time, end_time, result = self._success_handler_helper_fn(
            start_time=start_time,
            end_time=end_time,
            result=result,
            cache_hit=cache_hit,
            standard_logging_object=kwargs.get("standard_logging_object", None),
        )

        ## BUILD COMPLETE STREAMED RESPONSE
        if "async_complete_streaming_response" in self.model_call_details:
            return  # break out of this.
        complete_streaming_response: Optional[
            Union[ModelResponse, TextCompletionResponse, ResponsesAPIResponse]
        ] = self._get_assembled_streaming_response(
            result=result,
            start_time=start_time,
            end_time=end_time,
            is_async=True,
            streaming_chunks=self.streaming_chunks,
        )

        if complete_streaming_response is not None:
            print_verbose("Async success callbacks: Got a complete streaming response")

            self.model_call_details["async_complete_streaming_response"] = (
                complete_streaming_response
            )

            try:
                if self.model_call_details.get("cache_hit", False) is True:
                    self.model_call_details["response_cost"] = 0.0
                else:
                    # check if base_model set on azure
                    _get_base_model_from_metadata(
                        model_call_details=self.model_call_details
                    )
                    # base_model defaults to None if not set on model_info
                    self.model_call_details["response_cost"] = (
                        self._response_cost_calculator(
                            result=complete_streaming_response
                        )
                    )

                verbose_logger.debug(
                    f"Model={self.model}; cost={self.model_call_details['response_cost']}"
                )
            except litellm.NotFoundError:
                verbose_logger.warning(
                    f"Model={self.model} not found in completion cost map. Setting 'response_cost' to None"
                )
                self.model_call_details["response_cost"] = None

            ## STANDARDIZED LOGGING PAYLOAD
            self.model_call_details["standard_logging_object"] = (
                get_standard_logging_object_payload(
                    kwargs=self.model_call_details,
                    init_response_obj=complete_streaming_response,
                    start_time=start_time,
                    end_time=end_time,
                    logging_obj=self,
                    status="success",
                    standard_built_in_tools_params=self.standard_built_in_tools_params,
                )
            )
        callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_async_success_callbacks,
            global_callbacks=litellm._async_success_callback,
        )

        result = redact_message_input_output_from_logging(
            model_call_details=(
                self.model_call_details if hasattr(self, "model_call_details") else {}
            ),
            result=result,
        )

        ## LOGGING HOOK ##

        for callback in callbacks:
            if isinstance(callback, CustomGuardrail):
                from litellm.types.guardrails import GuardrailEventHooks

                if (
                    callback.should_run_guardrail(
                        data=self.model_call_details,
                        event_type=GuardrailEventHooks.logging_only,
                    )
                    is not True
                ):
                    continue

                self.model_call_details, result = await callback.async_logging_hook(
                    kwargs=self.model_call_details,
                    result=result,
                    call_type=self.call_type,
                )
            elif isinstance(callback, CustomLogger):
                result = redact_message_input_output_from_custom_logger(
                    result=result, litellm_logging_obj=self, custom_logger=callback
                )
                self.model_call_details, result = await callback.async_logging_hook(
                    kwargs=self.model_call_details,
                    result=result,
                    call_type=self.call_type,
                )

        self.has_run_logging(event_type="async_success")

        for callback in callbacks:
            # check if callback can run for this request
            litellm_params = self.model_call_details.get("litellm_params", {})
            should_run = self.should_run_callback(
                callback=callback,
                litellm_params=litellm_params,
                event_hook="async_success_handler",
            )
            if not should_run:
                continue
            try:
                if callback == "openmeter" and openMeterLogger is not None:
                    if self.stream is True:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            await openMeterLogger.async_log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            await openMeterLogger.async_log_stream_event(  # [TODO]: move this to being an async log stream event function
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    else:
                        await openMeterLogger.async_log_success_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                        )
                if isinstance(callback, CustomLogger):  # custom logger class
                    if self.stream is True:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            await callback.async_log_success_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                            )
                        else:
                            await callback.async_log_stream_event(  # [TODO]: move this to being an async log stream event function
                                kwargs=self.model_call_details,
                                response_obj=result,
                                start_time=start_time,
                                end_time=end_time,
                            )
                    else:
                        await callback.async_log_success_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                        )
                if callable(callback):  # custom logger functions
                    global customLogger
                    if customLogger is None:
                        customLogger = CustomLogger()
                    if self.stream:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            await customLogger.async_log_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                                print_verbose=print_verbose,
                                callback_func=callback,
                            )
                    else:
                        await customLogger.async_log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )
                if callback == "dynamodb":
                    global dynamoLogger
                    if dynamoLogger is None:
                        dynamoLogger = DyanmoDBLogger()
                    if self.stream:
                        if (
                            "async_complete_streaming_response"
                            in self.model_call_details
                        ):
                            print_verbose(
                                "DynamoDB Logger: Got Stream Event - Completed Stream Response"
                            )
                            await dynamoLogger._async_log_event(
                                kwargs=self.model_call_details,
                                response_obj=self.model_call_details[
                                    "async_complete_streaming_response"
                                ],
                                start_time=start_time,
                                end_time=end_time,
                                print_verbose=print_verbose,
                            )
                        else:
                            print_verbose(
                                "DynamoDB Logger: Got Stream Event - No complete stream response as yet"
                            )
                    else:
                        await dynamoLogger._async_log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
            except Exception:
                verbose_logger.error(
                    f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
                )
                pass

    def _failure_handler_helper_fn(
        self, exception, traceback_exception, start_time=None, end_time=None
    ):
        if start_time is None:
            start_time = self.start_time
        if end_time is None:
            end_time = datetime.datetime.now()

        # on some exceptions, model_call_details is not always initialized, this ensures that we still log those exceptions
        if not hasattr(self, "model_call_details"):
            self.model_call_details = {}

        self.model_call_details["log_event_type"] = "failed_api_call"
        self.model_call_details["exception"] = exception
        self.model_call_details["traceback_exception"] = traceback_exception
        self.model_call_details["end_time"] = end_time
        self.model_call_details.setdefault("original_response", None)
        self.model_call_details["response_cost"] = 0

        if hasattr(exception, "headers") and isinstance(exception.headers, dict):
            self.model_call_details.setdefault("litellm_params", {})
            metadata = (
                self.model_call_details["litellm_params"].get("metadata", {}) or {}
            )
            metadata.update(exception.headers)

        ## STANDARDIZED LOGGING PAYLOAD

        self.model_call_details["standard_logging_object"] = (
            get_standard_logging_object_payload(
                kwargs=self.model_call_details,
                init_response_obj={},
                start_time=start_time,
                end_time=end_time,
                logging_obj=self,
                status="failure",
                error_str=str(exception),
                original_exception=exception,
                standard_built_in_tools_params=self.standard_built_in_tools_params,
            )
        )
        return start_time, end_time

    async def special_failure_handlers(self, exception: Exception):
        """
        Custom events, emitted for specific failures.

        Currently just for router model group rate limit error
        """
        from litellm.types.router import RouterErrors

        litellm_params: dict = self.model_call_details.get("litellm_params") or {}
        metadata = litellm_params.get("metadata") or {}

        ## BASE CASE ## check if rate limit error for model group size 1
        is_base_case = False
        if metadata.get("model_group_size") is not None:
            model_group_size = metadata.get("model_group_size")
            if isinstance(model_group_size, int) and model_group_size == 1:
                is_base_case = True
        ## check if special error ##
        if (
            RouterErrors.no_deployments_available.value not in str(exception)
            and is_base_case is False
        ):
            return

        ## get original model group ##

        model_group = metadata.get("model_group") or None
        for callback in litellm._async_failure_callback:
            if isinstance(callback, CustomLogger):  # custom logger class
                await callback.log_model_group_rate_limit_error(
                    exception=exception,
                    original_model_group=model_group,
                    kwargs=self.model_call_details,
                )  # type: ignore

    def failure_handler(  # noqa: PLR0915
        self, exception, traceback_exception, start_time=None, end_time=None
    ):
        verbose_logger.debug(
            f"Logging Details LiteLLM-Failure Call: {litellm.failure_callback}"
        )
        if not self.should_run_logging(
            event_type="sync_failure"
        ):  # prevent double logging
            return
        try:
            start_time, end_time = self._failure_handler_helper_fn(
                exception=exception,
                traceback_exception=traceback_exception,
                start_time=start_time,
                end_time=end_time,
            )
            callbacks = self.get_combined_callback_list(
                dynamic_success_callbacks=self.dynamic_failure_callbacks,
                global_callbacks=litellm.failure_callback,
            )

            result = None  # result sent to all loggers, init this to None incase it's not created

            result = redact_message_input_output_from_logging(
                model_call_details=(
                    self.model_call_details
                    if hasattr(self, "model_call_details")
                    else {}
                ),
                result=result,
            )
            self.has_run_logging(event_type="sync_failure")
            for callback in callbacks:
                try:
                    litellm_params = self.model_call_details.get("litellm_params", {})
                    should_run = self.should_run_callback(
                        callback=callback,
                        litellm_params=litellm_params,
                        event_hook="failure_handler",
                    )
                    if not should_run:
                        continue
                    if callback == "lunary" and lunaryLogger is not None:
                        print_verbose("reaches lunary for logging error!")

                        model = self.model

                        input = self.model_call_details["input"]

                        _type = (
                            "embed"
                            if self.call_type == CallTypes.embedding.value
                            else "llm"
                        )

                        lunaryLogger.log_event(
                            kwargs=self.model_call_details,
                            type=_type,
                            event="error",
                            user_id=self.model_call_details.get("user", "default"),
                            model=model,
                            input=input,
                            error=traceback_exception,
                            run_id=self.litellm_call_id,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                        )
                    if callback == "sentry":
                        print_verbose("sending exception to sentry")
                        if capture_exception:
                            capture_exception(exception)
                        else:
                            print_verbose(
                                f"capture exception not initialized: {capture_exception}"
                            )
                    elif callback == "supabase" and supabaseClient is not None:
                        print_verbose("reaches supabase for logging!")
                        print_verbose(f"supabaseClient: {supabaseClient}")
                        supabaseClient.log_event(
                            model=self.model if hasattr(self, "model") else "",
                            messages=self.messages,
                            end_user=self.model_call_details.get("user", "default"),
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            litellm_call_id=self.model_call_details["litellm_call_id"],
                            print_verbose=print_verbose,
                        )
                    if (
                        callable(callback) and customLogger is not None
                    ):  # custom logger functions
                        customLogger.log_event(
                            kwargs=self.model_call_details,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            print_verbose=print_verbose,
                            callback_func=callback,
                        )
                    if (
                        isinstance(callback, CustomLogger)
                        and self.model_call_details.get("litellm_params", {}).get(
                            "acompletion", False
                        )
                        is not True
                        and self.model_call_details.get("litellm_params", {}).get(
                            "aembedding", False
                        )
                        is not True
                    ):  # custom logger class
                        callback.log_failure_event(
                            start_time=start_time,
                            end_time=end_time,
                            response_obj=result,
                            kwargs=self.model_call_details,
                        )
                    if callback == "langfuse":
                        global langFuseLogger
                        verbose_logger.debug("reaches langfuse for logging failure")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        # this only logs streaming once, complete_streaming_response exists i.e when stream ends
                        langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
                            globalLangfuseLogger=langFuseLogger,
                            standard_callback_dynamic_params=self.standard_callback_dynamic_params,
                            in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
                        )
                        _response = langfuse_logger_to_use.log_event_on_langfuse(
                            start_time=start_time,
                            end_time=end_time,
                            response_obj=None,
                            user_id=kwargs.get("user", None),
                            status_message=str(exception),
                            level="ERROR",
                            kwargs=self.model_call_details,
                        )
                        if _response is not None and isinstance(_response, dict):
                            _trace_id = _response.get("trace_id", None)
                            if _trace_id is not None:
                                in_memory_trace_id_cache.set_cache(
                                    litellm_call_id=self.litellm_call_id,
                                    service_name="langfuse",
                                    trace_id=_trace_id,
                                )
                    if callback == "traceloop":
                        traceloopLogger.log_event(
                            start_time=start_time,
                            end_time=end_time,
                            response_obj=None,
                            user_id=self.model_call_details.get("user", None),
                            print_verbose=print_verbose,
                            status_message=str(exception),
                            level="ERROR",
                            kwargs=self.model_call_details,
                        )
                    if callback == "logfire" and logfireLogger is not None:
                        verbose_logger.debug("reaches logfire for failure logging!")
                        kwargs = {}
                        for k, v in self.model_call_details.items():
                            if (
                                k != "original_response"
                            ):  # copy.deepcopy raises errors as this could be a coroutine
                                kwargs[k] = v
                        kwargs["exception"] = exception

                        logfireLogger.log_event(
                            kwargs=kwargs,
                            response_obj=result,
                            start_time=start_time,
                            end_time=end_time,
                            level=LogfireLevel.ERROR.value,  # type: ignore
                            print_verbose=print_verbose,
                        )

                except Exception as e:
                    print_verbose(
                        f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {str(e)}"
                    )
                    print_verbose(
                        f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
                    )
                    if capture_exception:  # log this error to sentry for debugging
                        capture_exception(e)
        except Exception as e:
            verbose_logger.exception(
                "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {}".format(
                    str(e)
                )
            )

    async def async_failure_handler(
        self, exception, traceback_exception, start_time=None, end_time=None
    ):
        """
        Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
        """
        await self.special_failure_handlers(exception=exception)
        if not self.should_run_logging(
            event_type="async_failure"
        ):  # prevent double logging
            return
        start_time, end_time = self._failure_handler_helper_fn(
            exception=exception,
            traceback_exception=traceback_exception,
            start_time=start_time,
            end_time=end_time,
        )

        callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_async_failure_callbacks,
            global_callbacks=litellm._async_failure_callback,
        )

        result = None  # result sent to all loggers, init this to None incase it's not created

        self.has_run_logging(event_type="async_failure")
        for callback in callbacks:
            try:
                litellm_params = self.model_call_details.get("litellm_params", {})
                should_run = self.should_run_callback(
                    callback=callback,
                    litellm_params=litellm_params,
                    event_hook="async_failure_handler",
                )
                if not should_run:
                    continue
                if isinstance(callback, CustomLogger):  # custom logger class
                    await callback.async_log_failure_event(
                        kwargs=self.model_call_details,
                        response_obj=result,
                        start_time=start_time,
                        end_time=end_time,
                    )  # type: ignore
                if (
                    callable(callback) and customLogger is not None
                ):  # custom logger functions
                    await customLogger.async_log_event(
                        kwargs=self.model_call_details,
                        response_obj=result,
                        start_time=start_time,
                        end_time=end_time,
                        print_verbose=print_verbose,
                        callback_func=callback,
                    )
            except Exception as e:
                verbose_logger.exception(
                    "LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure \
                        logging {}\nCallback={}".format(
                        str(e), callback
                    )
                )

    def _get_trace_id(self, service_name: Literal["langfuse"]) -> Optional[str]:
        """
        For the given service (e.g. langfuse), return the trace_id actually logged.

        Used for constructing the url in slack alerting.

        Returns:
            - str: The logged trace id
            - None: If trace id not yet emitted.
        """
        trace_id: Optional[str] = None
        if service_name == "langfuse":
            trace_id = in_memory_trace_id_cache.get_cache(
                litellm_call_id=self.litellm_call_id, service_name=service_name
            )

        return trace_id

    def _get_callback_object(self, service_name: Literal["langfuse"]) -> Optional[Any]:
        """
        Return dynamic callback object.

        Meant to solve issue when doing key-based/team-based logging
        """
        global langFuseLogger

        if service_name == "langfuse":
            if langFuseLogger is None or (
                (
                    self.standard_callback_dynamic_params.get("langfuse_public_key")
                    is not None
                    and self.standard_callback_dynamic_params.get("langfuse_public_key")
                    != langFuseLogger.public_key
                )
                or (
                    self.standard_callback_dynamic_params.get("langfuse_public_key")
                    is not None
                    and self.standard_callback_dynamic_params.get("langfuse_public_key")
                    != langFuseLogger.public_key
                )
                or (
                    self.standard_callback_dynamic_params.get("langfuse_host")
                    is not None
                    and self.standard_callback_dynamic_params.get("langfuse_host")
                    != langFuseLogger.langfuse_host
                )
            ):
                return LangFuseLogger(
                    langfuse_public_key=self.standard_callback_dynamic_params.get(
                        "langfuse_public_key"
                    ),
                    langfuse_secret=self.standard_callback_dynamic_params.get(
                        "langfuse_secret"
                    ),
                    langfuse_host=self.standard_callback_dynamic_params.get(
                        "langfuse_host"
                    ),
                )
            return langFuseLogger

        return None

    def handle_sync_success_callbacks_for_async_calls(
        self,
        result: Any,
        start_time: datetime.datetime,
        end_time: datetime.datetime,
    ) -> None:
        """
        Handles calling success callbacks for Async calls.

        Why: Some callbacks - `langfuse`, `s3` are sync callbacks. We need to call them in the executor.
        """
        if self._should_run_sync_callbacks_for_async_calls() is False:
            return

        executor.submit(
            self.success_handler,
            result,
            start_time,
            end_time,
        )

    def _should_run_sync_callbacks_for_async_calls(self) -> bool:
        """
        Returns:
            - bool: True if sync callbacks should be run for async calls. eg. `langfuse`, `s3`
        """
        _combined_sync_callbacks = self.get_combined_callback_list(
            dynamic_success_callbacks=self.dynamic_success_callbacks,
            global_callbacks=litellm.success_callback,
        )
        _filtered_success_callbacks = self._remove_internal_custom_logger_callbacks(
            _combined_sync_callbacks
        )
        _filtered_success_callbacks = self._remove_internal_litellm_callbacks(
            _filtered_success_callbacks
        )
        return len(_filtered_success_callbacks) > 0

    def get_combined_callback_list(
        self, dynamic_success_callbacks: Optional[List], global_callbacks: List
    ) -> List:
        if dynamic_success_callbacks is None:
            return global_callbacks
        return list(set(dynamic_success_callbacks + global_callbacks))

    def _remove_internal_litellm_callbacks(self, callbacks: List) -> List:
        """
        Creates a filtered list of callbacks, excluding internal LiteLLM callbacks.

        Args:
            callbacks: List of callback functions/strings to filter

        Returns:
            List of filtered callbacks with internal ones removed
        """
        filtered = [
            cb for cb in callbacks if not self._is_internal_litellm_proxy_callback(cb)
        ]

        verbose_logger.debug(f"Filtered callbacks: {filtered}")
        return filtered

    def _get_callback_name(self, cb) -> str:
        """
        Helper to get the name of a callback function

        Args:
            cb: The callback function/string to get the name of

        Returns:
            The name of the callback
        """
        if hasattr(cb, "__name__"):
            return cb.__name__
        if hasattr(cb, "__func__"):
            return cb.__func__.__name__
        return str(cb)

    def _is_internal_litellm_proxy_callback(self, cb) -> bool:
        """Helper to check if a callback is internal"""
        INTERNAL_PREFIXES = [
            "_PROXY",
            "_service_logger.ServiceLogging",
            "sync_deployment_callback_on_success",
        ]
        if isinstance(cb, str):
            return False

        if not callable(cb):
            return True

        cb_name = self._get_callback_name(cb)
        return any(prefix in cb_name for prefix in INTERNAL_PREFIXES)

    def _remove_internal_custom_logger_callbacks(self, callbacks: List) -> List:
        """
        Removes internal custom logger callbacks from the list.
        """
        _new_callbacks = []
        for _c in callbacks:
            if isinstance(_c, CustomLogger):
                continue
            elif (
                isinstance(_c, str)
                and _c in litellm._known_custom_logger_compatible_callbacks
            ):
                continue
            _new_callbacks.append(_c)
        return _new_callbacks

    def _get_assembled_streaming_response(
        self,
        result: Union[
            ModelResponse,
            TextCompletionResponse,
            ModelResponseStream,
            ResponseCompletedEvent,
            Any,
        ],
        start_time: datetime.datetime,
        end_time: datetime.datetime,
        is_async: bool,
        streaming_chunks: List[Any],
    ) -> Optional[Union[ModelResponse, TextCompletionResponse, ResponsesAPIResponse]]:
        if isinstance(result, ModelResponse):
            return result
        elif isinstance(result, TextCompletionResponse):
            return result
        elif isinstance(result, ResponseCompletedEvent):
            return result.response
        else:
            return None
        return None

    def _handle_anthropic_messages_response_logging(self, result: Any) -> ModelResponse:
        """
        Handles logging for Anthropic messages responses.

        Args:
            result: The response object from the model call

        Returns:
            The the response object from the model call

        - For Non-streaming responses, we need to transform the response to a ModelResponse object.
        - For streaming responses, anthropic_messages handler calls success_handler with a assembled ModelResponse.
        """
        if self.stream and isinstance(result, ModelResponse):
            return result
        elif isinstance(result, ModelResponse):
            return result

        if "httpx_response" in self.model_call_details:
            result = litellm.AnthropicConfig().transform_response(
                raw_response=self.model_call_details.get("httpx_response", None),
                model_response=litellm.ModelResponse(),
                model=self.model,
                messages=[],
                logging_obj=self,
                optional_params={},
                api_key="",
                request_data={},
                encoding=litellm.encoding,
                json_mode=False,
                litellm_params={},
            )
        else:
            from litellm.types.llms.anthropic import AnthropicResponse

            pydantic_result = AnthropicResponse.model_validate(result)
            import httpx

            result = litellm.AnthropicConfig().transform_parsed_response(
                completion_response=pydantic_result.model_dump(),
                raw_response=httpx.Response(
                    status_code=200,
                    headers={},
                ),
                model_response=litellm.ModelResponse(),
                json_mode=None,
            )
        return result

    def _handle_non_streaming_google_genai_generate_content_response_logging(
        self, result: Any
    ) -> ModelResponse:
        """
        Handles logging for Google GenAI generate content responses.
        """
        import httpx

        httpx_response = self.model_call_details.get("httpx_response", None)
        if httpx_response is None:
            raise ValueError("Google GenAI Generate Content: httpx_response is None")
        dict_result = httpx_response.json()
        result = litellm.VertexGeminiConfig()._transform_google_generate_content_to_openai_model_response(
            completion_response=dict_result,
            model_response=litellm.ModelResponse(),
            model=self.model,
            logging_obj=self,
            raw_response=httpx.Response(
                status_code=200,
                headers={},
            ),
        )
        return result


def _get_masked_values(
    sensitive_object: dict,
    ignore_sensitive_values: bool = False,
    mask_all_values: bool = False,
    unmasked_length: int = 4,
    number_of_asterisks: Optional[int] = 4,
) -> dict:
    """
    Internal debugging helper function

    Masks the headers of the request sent from LiteLLM

    Args:
        masked_length: Optional length for the masked portion (number of *). If set, will use exactly this many *
                     regardless of original string length. The total length will be unmasked_length + masked_length.
    """
    sensitive_keywords = [
        "authorization",
        "token",
        "key",
        "secret",
    ]
    return {
        k: (
            # If ignore_sensitive_values is True, or if this key doesn't contain sensitive keywords, return original value
            v
            if ignore_sensitive_values
            or not any(
                sensitive_keyword in k.lower()
                for sensitive_keyword in sensitive_keywords
            )
            else (
                # Apply masking to sensitive keys
                (
                    v[: unmasked_length // 2]
                    + "*" * number_of_asterisks
                    + v[-unmasked_length // 2 :]
                )
                if (
                    isinstance(v, str)
                    and len(v) > unmasked_length
                    and number_of_asterisks is not None
                )
                else (
                    (
                        v[: unmasked_length // 2]
                        + "*" * (len(v) - unmasked_length)
                        + v[-unmasked_length // 2 :]
                    )
                    if (isinstance(v, str) and len(v) > unmasked_length)
                    else ("*****" if isinstance(v, str) else v)
                )
            )
        )
        for k, v in sensitive_object.items()
    }


def set_callbacks(callback_list, function_id=None):  # noqa: PLR0915
    """
    Globally sets the callback client
    """
    global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, athinaLogger, heliconeLogger, supabaseClient, lunaryLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, logfireLogger, dynamoLogger, s3Logger, dataDogLogger, prometheusLogger, greenscaleLogger, openMeterLogger, deepevalLogger

    try:
        for callback in callback_list:
            if callback == "sentry":
                try:
                    import sentry_sdk
                except ImportError:
                    print_verbose("Package 'sentry_sdk' is missing. Installing it...")
                    subprocess.check_call(
                        [sys.executable, "-m", "pip", "install", "sentry_sdk"]
                    )
                    import sentry_sdk
                from sentry_sdk.scrubber import EventScrubber

                sentry_sdk_instance = sentry_sdk
                sentry_trace_rate = (
                    os.environ.get("SENTRY_API_TRACE_RATE")
                    if "SENTRY_API_TRACE_RATE" in os.environ
                    else "1.0"
                )
                sentry_sample_rate = (
                    os.environ.get("SENTRY_API_SAMPLE_RATE")
                    if "SENTRY_API_SAMPLE_RATE" in os.environ
                    else "1.0"
                )
                sentry_sdk_instance.init(
                    dsn=os.environ.get("SENTRY_DSN"),
                    traces_sample_rate=float(sentry_trace_rate),  # type: ignore
                    sample_rate=float(
                        sentry_sample_rate if sentry_sample_rate else 1.0
                    ),
                    send_default_pii=False,  # Prevent sending Personal Identifiable Information
                    event_scrubber=EventScrubber(
                        denylist=SENTRY_DENYLIST, pii_denylist=SENTRY_PII_DENYLIST
                    ),
                )
                capture_exception = sentry_sdk_instance.capture_exception
                add_breadcrumb = sentry_sdk_instance.add_breadcrumb
            elif callback == "posthog":
                try:
                    from posthog import Posthog
                except ImportError:
                    print_verbose("Package 'posthog' is missing. Installing it...")
                    subprocess.check_call(
                        [sys.executable, "-m", "pip", "install", "posthog"]
                    )
                    from posthog import Posthog
                posthog = Posthog(
                    project_api_key=os.environ.get("POSTHOG_API_KEY"),
                    host=os.environ.get("POSTHOG_API_URL"),
                )
            elif callback == "slack":
                try:
                    from slack_bolt import App
                except ImportError:
                    print_verbose("Package 'slack_bolt' is missing. Installing it...")
                    subprocess.check_call(
                        [sys.executable, "-m", "pip", "install", "slack_bolt"]
                    )
                    from slack_bolt import App
                slack_app = App(
                    token=os.environ.get("SLACK_API_TOKEN"),
                    signing_secret=os.environ.get("SLACK_API_SECRET"),
                )
                alerts_channel = os.environ["SLACK_API_CHANNEL"]
                print_verbose(f"Initialized Slack App: {slack_app}")
            elif callback == "traceloop":
                traceloopLogger = TraceloopLogger()
            elif callback == "athina":
                athinaLogger = AthinaLogger()
                print_verbose("Initialized Athina Logger")
            elif callback == "helicone":
                heliconeLogger = HeliconeLogger()
            elif callback == "lunary":
                lunaryLogger = LunaryLogger()
            elif callback == "promptlayer":
                promptLayerLogger = PromptLayerLogger()
            elif callback == "langfuse":
                langFuseLogger = LangFuseLogger(
                    langfuse_public_key=None, langfuse_secret=None, langfuse_host=None
                )
            elif callback == "openmeter":
                openMeterLogger = OpenMeterLogger()
            elif callback == "datadog":
                dataDogLogger = DataDogLogger()
            elif callback == "dynamodb":
                dynamoLogger = DyanmoDBLogger()
            elif callback == "s3":
                s3Logger = S3Logger()
            elif callback == "wandb":
                from litellm.integrations.weights_biases import WeightsBiasesLogger

                weightsBiasesLogger = WeightsBiasesLogger()
            elif callback == "logfire":
                logfireLogger = LogfireLogger()
            elif callback == "supabase":
                print_verbose("instantiating supabase")
                supabaseClient = Supabase()
            elif callback == "greenscale":
                greenscaleLogger = GreenscaleLogger()
                print_verbose("Initialized Greenscale Logger")
            elif callable(callback):
                customLogger = CustomLogger()
    except Exception as e:
        raise e
    return None


def _init_custom_logger_compatible_class(  # noqa: PLR0915
    logging_integration: _custom_logger_compatible_callbacks_literal,
    internal_usage_cache: Optional[DualCache],
    llm_router: Optional[
        Any
    ],  # expect litellm.Router, but typing errors due to circular import
    custom_logger_init_args: Optional[dict] = {},
) -> Optional[CustomLogger]:
    """
    Initialize a custom logger compatible class
    """
    try:
        custom_logger_init_args = custom_logger_init_args or {}
        if logging_integration == "agentops":  # Add AgentOps initialization
            for callback in _in_memory_loggers:
                if isinstance(callback, AgentOps):
                    return callback  # type: ignore

            agentops_logger = AgentOps()
            _in_memory_loggers.append(agentops_logger)
            return agentops_logger  # type: ignore
        elif logging_integration == "lago":
            for callback in _in_memory_loggers:
                if isinstance(callback, LagoLogger):
                    return callback  # type: ignore

            lago_logger = LagoLogger()
            _in_memory_loggers.append(lago_logger)
            return lago_logger  # type: ignore
        elif logging_integration == "openmeter":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpenMeterLogger):
                    return callback  # type: ignore

            _openmeter_logger = OpenMeterLogger()
            _in_memory_loggers.append(_openmeter_logger)
            return _openmeter_logger  # type: ignore
        elif logging_integration == "braintrust":
            from litellm.integrations.braintrust_logging import BraintrustLogger

            for callback in _in_memory_loggers:
                if isinstance(callback, BraintrustLogger):
                    return callback  # type: ignore

            braintrust_logger = BraintrustLogger()
            _in_memory_loggers.append(braintrust_logger)
            return braintrust_logger  # type: ignore
        elif logging_integration == "langsmith":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangsmithLogger):
                    return callback  # type: ignore

            _langsmith_logger = LangsmithLogger()
            _in_memory_loggers.append(_langsmith_logger)
            return _langsmith_logger  # type: ignore
        elif logging_integration == "argilla":
            for callback in _in_memory_loggers:
                if isinstance(callback, ArgillaLogger):
                    return callback  # type: ignore

            _argilla_logger = ArgillaLogger()
            _in_memory_loggers.append(_argilla_logger)
            return _argilla_logger  # type: ignore
        elif logging_integration == "literalai":
            for callback in _in_memory_loggers:
                if isinstance(callback, LiteralAILogger):
                    return callback  # type: ignore

            _literalai_logger = LiteralAILogger()
            _in_memory_loggers.append(_literalai_logger)
            return _literalai_logger  # type: ignore
        elif logging_integration == "prometheus":
            for callback in _in_memory_loggers:
                if isinstance(callback, PrometheusLogger):
                    return callback  # type: ignore

            _prometheus_logger = PrometheusLogger()
            _in_memory_loggers.append(_prometheus_logger)
            return _prometheus_logger  # type: ignore
        elif logging_integration == "datadog":
            for callback in _in_memory_loggers:
                if isinstance(callback, DataDogLogger):
                    return callback  # type: ignore

            _datadog_logger = DataDogLogger()
            _in_memory_loggers.append(_datadog_logger)
            return _datadog_logger  # type: ignore
        elif logging_integration == "datadog_llm_observability":
            _datadog_llm_obs_logger = DataDogLLMObsLogger()
            _in_memory_loggers.append(_datadog_llm_obs_logger)
            return _datadog_llm_obs_logger  # type: ignore
        elif logging_integration == "gcs_bucket":
            for callback in _in_memory_loggers:
                if isinstance(callback, GCSBucketLogger):
                    return callback  # type: ignore

            _gcs_bucket_logger = GCSBucketLogger()
            _in_memory_loggers.append(_gcs_bucket_logger)
            return _gcs_bucket_logger  # type: ignore
        elif logging_integration == "s3_v2":
            for callback in _in_memory_loggers:
                if isinstance(callback, S3V2Logger):
                    return callback  # type: ignore

            _s3_v2_logger = S3V2Logger()
            _in_memory_loggers.append(_s3_v2_logger)
            return _s3_v2_logger  # type: ignore
        elif logging_integration == "aws_sqs":
            for callback in _in_memory_loggers:
                if isinstance(callback, SQSLogger):
                    return callback  # type: ignore

            _aws_sqs_logger = SQSLogger()
            _in_memory_loggers.append(_aws_sqs_logger)
            return _aws_sqs_logger  # type: ignore
        elif logging_integration == "azure_storage":
            for callback in _in_memory_loggers:
                if isinstance(callback, AzureBlobStorageLogger):
                    return callback  # type: ignore

            _azure_storage_logger = AzureBlobStorageLogger()
            _in_memory_loggers.append(_azure_storage_logger)
            return _azure_storage_logger  # type: ignore
        elif logging_integration == "opik":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpikLogger):
                    return callback  # type: ignore

            _opik_logger = OpikLogger()
            _in_memory_loggers.append(_opik_logger)
            return _opik_logger  # type: ignore
        elif logging_integration == "arize":
            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            arize_config = ArizeLogger.get_arize_config()
            if arize_config.endpoint is None:
                raise ValueError(
                    "No valid endpoint found for Arize, please set 'ARIZE_ENDPOINT' to your GRPC endpoint or 'ARIZE_HTTP_ENDPOINT' to your HTTP endpoint"
                )
            otel_config = OpenTelemetryConfig(
                exporter=arize_config.protocol,
                endpoint=arize_config.endpoint,
            )

            os.environ["OTEL_EXPORTER_OTLP_TRACES_HEADERS"] = (
                f"space_id={arize_config.space_key},api_key={arize_config.api_key}"
            )
            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, ArizeLogger)
                    and callback.callback_name == "arize"
                ):
                    return callback  # type: ignore
            _arize_otel_logger = ArizeLogger(config=otel_config, callback_name="arize")
            _in_memory_loggers.append(_arize_otel_logger)
            return _arize_otel_logger  # type: ignore
        elif logging_integration == "arize_phoenix":
            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            arize_phoenix_config = ArizePhoenixLogger.get_arize_phoenix_config()
            otel_config = OpenTelemetryConfig(
                exporter=arize_phoenix_config.protocol,
                endpoint=arize_phoenix_config.endpoint,
            )

            # auth can be disabled on local deployments of arize phoenix
            if arize_phoenix_config.otlp_auth_headers is not None:
                os.environ["OTEL_EXPORTER_OTLP_TRACES_HEADERS"] = (
                    arize_phoenix_config.otlp_auth_headers
                )

            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "arize_phoenix"
                ):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(
                config=otel_config, callback_name="arize_phoenix"
            )
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore
        elif logging_integration == "otel":
            from litellm.integrations.opentelemetry import OpenTelemetry

            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback  # type: ignore
            otel_logger = OpenTelemetry(
                **_get_custom_logger_settings_from_proxy_server(
                    callback_name=logging_integration
                )
            )
            _in_memory_loggers.append(otel_logger)
            return otel_logger  # type: ignore

        elif logging_integration == "galileo":
            for callback in _in_memory_loggers:
                if isinstance(callback, GalileoObserve):
                    return callback  # type: ignore

            galileo_logger = GalileoObserve()
            _in_memory_loggers.append(galileo_logger)
            return galileo_logger  # type: ignore

        elif logging_integration == "deepeval":
            for callback in _in_memory_loggers:
                if isinstance(callback, DeepEvalLogger):
                    return callback  # type: ignore
            deepeval_logger = DeepEvalLogger()
            _in_memory_loggers.append(deepeval_logger)
            return deepeval_logger  # type: ignore

        elif logging_integration == "logfire":
            if "LOGFIRE_TOKEN" not in os.environ:
                raise ValueError("LOGFIRE_TOKEN not found in environment variables")
            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            otel_config = OpenTelemetryConfig(
                exporter="otlp_http",
                endpoint="https://logfire-api.pydantic.dev/v1/traces",
                headers=f"Authorization={os.getenv('LOGFIRE_TOKEN')}",
            )
            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(config=otel_config)
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore
        elif logging_integration == "dynamic_rate_limiter":
            from litellm.proxy.hooks.dynamic_rate_limiter import (
                _PROXY_DynamicRateLimitHandler,
            )

            for callback in _in_memory_loggers:
                if isinstance(callback, _PROXY_DynamicRateLimitHandler):
                    return callback  # type: ignore

            if internal_usage_cache is None:
                raise Exception(
                    "Internal Error: Cache cannot be empty - internal_usage_cache={}".format(
                        internal_usage_cache
                    )
                )

            dynamic_rate_limiter_obj = _PROXY_DynamicRateLimitHandler(
                internal_usage_cache=internal_usage_cache
            )

            if llm_router is not None and isinstance(llm_router, litellm.Router):
                dynamic_rate_limiter_obj.update_variables(llm_router=llm_router)
            _in_memory_loggers.append(dynamic_rate_limiter_obj)
            return dynamic_rate_limiter_obj  # type: ignore
        elif logging_integration == "langtrace":
            if "LANGTRACE_API_KEY" not in os.environ:
                raise ValueError("LANGTRACE_API_KEY not found in environment variables")

            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            otel_config = OpenTelemetryConfig(
                exporter="otlp_http",
                endpoint="https://langtrace.ai/api/trace",
            )
            os.environ["OTEL_EXPORTER_OTLP_TRACES_HEADERS"] = (
                f"api_key={os.getenv('LANGTRACE_API_KEY')}"
            )
            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "langtrace"
                ):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(config=otel_config, callback_name="langtrace")
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore

        elif logging_integration == "mlflow":
            for callback in _in_memory_loggers:
                if isinstance(callback, MlflowLogger):
                    return callback  # type: ignore

            _mlflow_logger = MlflowLogger()
            _in_memory_loggers.append(_mlflow_logger)
            return _mlflow_logger  # type: ignore
        elif logging_integration == "langfuse":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangfusePromptManagement):
                    return callback

            langfuse_logger = LangfusePromptManagement()
            _in_memory_loggers.append(langfuse_logger)
            return langfuse_logger  # type: ignore
        elif logging_integration == "langfuse_otel":
            from litellm.integrations.opentelemetry import (
                OpenTelemetry,
                OpenTelemetryConfig,
            )

            langfuse_otel_config = LangfuseOtelLogger.get_langfuse_otel_config()

            # The endpoint and headers are now set as environment variables by get_langfuse_otel_config()
            otel_config = OpenTelemetryConfig(
                exporter=langfuse_otel_config.protocol,
            )

            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "langfuse_otel"
                ):
                    return callback  # type: ignore
            _otel_logger = OpenTelemetry(
                config=otel_config, callback_name="langfuse_otel"
            )
            _in_memory_loggers.append(_otel_logger)
            return _otel_logger  # type: ignore
        elif logging_integration == "pagerduty":
            for callback in _in_memory_loggers:
                if isinstance(callback, PagerDutyAlerting):
                    return callback
            pagerduty_logger = PagerDutyAlerting(**custom_logger_init_args)
            _in_memory_loggers.append(pagerduty_logger)
            return pagerduty_logger  # type: ignore
        elif logging_integration == "anthropic_cache_control_hook":
            for callback in _in_memory_loggers:
                if isinstance(callback, AnthropicCacheControlHook):
                    return callback
            anthropic_cache_control_hook = AnthropicCacheControlHook()
            _in_memory_loggers.append(anthropic_cache_control_hook)
            return anthropic_cache_control_hook  # type: ignore
        elif logging_integration == "vector_store_pre_call_hook":
            from litellm.integrations.vector_store_integrations.vector_store_pre_call_hook import (
                VectorStorePreCallHook,
            )
            
            for callback in _in_memory_loggers:
                if isinstance(callback, VectorStorePreCallHook):
                    return callback
            vector_store_pre_call_hook = VectorStorePreCallHook()
            _in_memory_loggers.append(vector_store_pre_call_hook)
            return vector_store_pre_call_hook  # type: ignore
        elif logging_integration == "gcs_pubsub":
            for callback in _in_memory_loggers:
                if isinstance(callback, GcsPubSubLogger):
                    return callback
            _gcs_pubsub_logger = GcsPubSubLogger()
            _in_memory_loggers.append(_gcs_pubsub_logger)
            return _gcs_pubsub_logger  # type: ignore
        elif logging_integration == "generic_api":
            for callback in _in_memory_loggers:
                if isinstance(callback, GenericAPILogger):
                    return callback
            generic_api_logger = GenericAPILogger()
            _in_memory_loggers.append(generic_api_logger)
            return generic_api_logger  # type: ignore
        elif logging_integration == "resend_email":
            for callback in _in_memory_loggers:
                if isinstance(callback, ResendEmailLogger):
                    return callback
            resend_email_logger = ResendEmailLogger()
            _in_memory_loggers.append(resend_email_logger)
            return resend_email_logger  # type: ignore
        elif logging_integration == "smtp_email":
            for callback in _in_memory_loggers:
                if isinstance(callback, SMTPEmailLogger):
                    return callback
            smtp_email_logger = SMTPEmailLogger()
            _in_memory_loggers.append(smtp_email_logger)
            return smtp_email_logger  # type: ignore
        elif logging_integration == "humanloop":
            for callback in _in_memory_loggers:
                if isinstance(callback, HumanloopLogger):
                    return callback

            humanloop_logger = HumanloopLogger()
            _in_memory_loggers.append(humanloop_logger)
            return humanloop_logger  # type: ignore
    except Exception as e:
        verbose_logger.exception(
            f"[Non-Blocking Error] Error initializing custom logger: {e}"
        )
        return None


def get_custom_logger_compatible_class(  # noqa: PLR0915
    logging_integration: _custom_logger_compatible_callbacks_literal,
) -> Optional[CustomLogger]:
    try:
        if logging_integration == "lago":
            for callback in _in_memory_loggers:
                if isinstance(callback, LagoLogger):
                    return callback
        elif logging_integration == "openmeter":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpenMeterLogger):
                    return callback
        elif logging_integration == "braintrust":
            from litellm.integrations.braintrust_logging import BraintrustLogger

            for callback in _in_memory_loggers:
                if isinstance(callback, BraintrustLogger):
                    return callback
        elif logging_integration == "galileo":
            for callback in _in_memory_loggers:
                if isinstance(callback, GalileoObserve):
                    return callback
        elif logging_integration == "deepeval":
            for callback in _in_memory_loggers:
                if isinstance(callback, DeepEvalLogger):
                    return callback
        elif logging_integration == "langsmith":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangsmithLogger):
                    return callback
        elif logging_integration == "argilla":
            for callback in _in_memory_loggers:
                if isinstance(callback, ArgillaLogger):
                    return callback
        elif logging_integration == "literalai":
            for callback in _in_memory_loggers:
                if isinstance(callback, LiteralAILogger):
                    return callback
        elif logging_integration == "prometheus":
            for callback in _in_memory_loggers:
                if isinstance(callback, PrometheusLogger):
                    return callback
        elif logging_integration == "datadog":
            for callback in _in_memory_loggers:
                if isinstance(callback, DataDogLogger):
                    return callback
        elif logging_integration == "datadog_llm_observability":
            for callback in _in_memory_loggers:
                if isinstance(callback, DataDogLLMObsLogger):
                    return callback
        elif logging_integration == "gcs_bucket":
            for callback in _in_memory_loggers:
                if isinstance(callback, GCSBucketLogger):
                    return callback
        elif logging_integration == "s3_v2":
            for callback in _in_memory_loggers:
                if isinstance(callback, S3V2Logger):
                    return callback
        elif logging_integration == "aws_sqs":
            for callback in _in_memory_loggers:
                if isinstance(callback, SQSLogger):
                    return callback
            _aws_sqs_logger = SQSLogger()
            _in_memory_loggers.append(_aws_sqs_logger)
            return _aws_sqs_logger  # type: ignore
        elif logging_integration == "azure_storage":
            for callback in _in_memory_loggers:
                if isinstance(callback, AzureBlobStorageLogger):
                    return callback
        elif logging_integration == "opik":
            for callback in _in_memory_loggers:
                if isinstance(callback, OpikLogger):
                    return callback
        elif logging_integration == "langfuse":
            for callback in _in_memory_loggers:
                if isinstance(callback, LangfusePromptManagement):
                    return callback
        elif logging_integration == "otel":
            from litellm.integrations.opentelemetry import OpenTelemetry

            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback
        elif logging_integration == "arize":
            if "ARIZE_SPACE_KEY" not in os.environ:
                raise ValueError("ARIZE_SPACE_KEY not found in environment variables")
            if "ARIZE_API_KEY" not in os.environ:
                raise ValueError("ARIZE_API_KEY not found in environment variables")
            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, ArizeLogger)
                    and callback.callback_name == "arize"
                ):
                    return callback
        elif logging_integration == "logfire":
            if "LOGFIRE_TOKEN" not in os.environ:
                raise ValueError("LOGFIRE_TOKEN not found in environment variables")
            from litellm.integrations.opentelemetry import OpenTelemetry

            for callback in _in_memory_loggers:
                if isinstance(callback, OpenTelemetry):
                    return callback  # type: ignore

        elif logging_integration == "dynamic_rate_limiter":
            from litellm.proxy.hooks.dynamic_rate_limiter import (
                _PROXY_DynamicRateLimitHandler,
            )

            for callback in _in_memory_loggers:
                if isinstance(callback, _PROXY_DynamicRateLimitHandler):
                    return callback  # type: ignore

        elif logging_integration == "langtrace":
            from litellm.integrations.opentelemetry import OpenTelemetry

            if "LANGTRACE_API_KEY" not in os.environ:
                raise ValueError("LANGTRACE_API_KEY not found in environment variables")

            for callback in _in_memory_loggers:
                if (
                    isinstance(callback, OpenTelemetry)
                    and callback.callback_name == "langtrace"
                ):
                    return callback

        elif logging_integration == "mlflow":
            for callback in _in_memory_loggers:
                if isinstance(callback, MlflowLogger):
                    return callback
        elif logging_integration == "pagerduty":
            for callback in _in_memory_loggers:
                if isinstance(callback, PagerDutyAlerting):
                    return callback
        elif logging_integration == "anthropic_cache_control_hook":
            for callback in _in_memory_loggers:
                if isinstance(callback, AnthropicCacheControlHook):
                    return callback
        elif logging_integration == "vector_store_pre_call_hook":
            from litellm.integrations.vector_store_integrations.vector_store_pre_call_hook import (
                VectorStorePreCallHook,
            )
            
            for callback in _in_memory_loggers:
                if isinstance(callback, VectorStorePreCallHook):
                    return callback
        elif logging_integration == "gcs_pubsub":
            for callback in _in_memory_loggers:
                if isinstance(callback, GcsPubSubLogger):
                    return callback
        elif logging_integration == "generic_api":
            for callback in _in_memory_loggers:
                if isinstance(callback, GenericAPILogger):
                    return callback
        elif logging_integration == "resend_email":
            for callback in _in_memory_loggers:
                if isinstance(callback, ResendEmailLogger):
                    return callback
        elif logging_integration == "smtp_email":
            for callback in _in_memory_loggers:
                if isinstance(callback, SMTPEmailLogger):
                    return callback
        return None

    except Exception as e:
        verbose_logger.exception(
            f"[Non-Blocking Error] Error getting custom logger: {e}"
        )
        return None


def _get_custom_logger_settings_from_proxy_server(callback_name: str) -> Dict:
    """
    Get the settings for a custom logger from the proxy server config.yaml

    Proxy server config.yaml defines callback_settings as:

    callback_settings:
        otel:
            message_logging: False
    """
    from litellm.proxy.proxy_server import callback_settings

    if callback_settings:
        return dict(callback_settings.get(callback_name, {}))
    return {}


def use_custom_pricing_for_model(litellm_params: Optional[dict]) -> bool:
    """
    Check if the model uses custom pricing

    Returns True if any of `SPECIAL_MODEL_INFO_PARAMS` are present in `litellm_params` or `model_info`
    """
    if litellm_params is None:
        return False

    metadata: dict = litellm_params.get("metadata", {}) or {}
    model_info: dict = metadata.get("model_info", {}) or {}

    custom_pricing_keys = CustomPricingLiteLLMParams.model_fields.keys()
    for key in custom_pricing_keys:
        if litellm_params.get(key, None) is not None:
            return True
        elif model_info.get(key, None) is not None:
            return True

    return False


def is_valid_sha256_hash(value: str) -> bool:
    # Check if the value is a valid SHA-256 hash (64 hexadecimal characters)
    return bool(re.fullmatch(r"[a-fA-F0-9]{64}", value))


class StandardLoggingPayloadSetup:
    @staticmethod
    def cleanup_timestamps(
        start_time: Union[dt_object, float],
        end_time: Union[dt_object, float],
        completion_start_time: Union[dt_object, float],
    ) -> Tuple[float, float, float]:
        """
        Convert datetime objects to floats

        Args:
            start_time: Union[dt_object, float]
            end_time: Union[dt_object, float]
            completion_start_time: Union[dt_object, float]

        Returns:
            Tuple[float, float, float]: A tuple containing the start time, end time, and completion start time as floats.
        """

        if isinstance(start_time, datetime.datetime):
            start_time_float = start_time.timestamp()
        elif isinstance(start_time, float):
            start_time_float = start_time
        else:
            raise ValueError(
                f"start_time is required, got={start_time} of type {type(start_time)}"
            )

        if isinstance(end_time, datetime.datetime):
            end_time_float = end_time.timestamp()
        elif isinstance(end_time, float):
            end_time_float = end_time
        else:
            raise ValueError(
                f"end_time is required, got={end_time} of type {type(end_time)}"
            )

        if isinstance(completion_start_time, datetime.datetime):
            completion_start_time_float = completion_start_time.timestamp()
        elif isinstance(completion_start_time, float):
            completion_start_time_float = completion_start_time
        else:
            completion_start_time_float = end_time_float

        return start_time_float, end_time_float, completion_start_time_float

    @staticmethod
    def get_standard_logging_metadata(
        metadata: Optional[Dict[str, Any]],
        litellm_params: Optional[dict] = None,
        prompt_integration: Optional[str] = None,
        applied_guardrails: Optional[List[str]] = None,
        mcp_tool_call_metadata: Optional[StandardLoggingMCPToolCall] = None,
        vector_store_request_metadata: Optional[
            List[StandardLoggingVectorStoreRequest]
        ] = None,
        usage_object: Optional[dict] = None,
        proxy_server_request: Optional[dict] = None,
    ) -> StandardLoggingMetadata:
        """
        Clean and filter the metadata dictionary to include only the specified keys in StandardLoggingMetadata.

        Args:
            metadata (Optional[Dict[str, Any]]): The original metadata dictionary.

        Returns:
            StandardLoggingMetadata: A StandardLoggingMetadata object containing the cleaned metadata.

        Note:
            - If the input metadata is None or not a dictionary, an empty StandardLoggingMetadata object is returned.
            - If 'user_api_key' is present in metadata and is a valid SHA256 hash, it's stored as 'user_api_key_hash'.
        """

        prompt_management_metadata: Optional[
            StandardLoggingPromptManagementMetadata
        ] = None
        if litellm_params is not None:
            prompt_id = cast(Optional[str], litellm_params.get("prompt_id", None))
            prompt_variables = cast(
                Optional[dict], litellm_params.get("prompt_variables", None)
            )

            if prompt_id is not None and prompt_integration is not None:
                prompt_management_metadata = StandardLoggingPromptManagementMetadata(
                    prompt_id=prompt_id,
                    prompt_variables=prompt_variables,
                    prompt_integration=prompt_integration,
                )

        # Initialize with default values
        clean_metadata = StandardLoggingMetadata(
            user_api_key_hash=None,
            user_api_key_alias=None,
            user_api_key_team_id=None,
            user_api_key_org_id=None,
            user_api_key_user_id=None,
            user_api_key_team_alias=None,
            user_api_key_user_email=None,
            spend_logs_metadata=None,
            requester_ip_address=None,
            requester_metadata=None,
            user_api_key_end_user_id=None,
            prompt_management_metadata=prompt_management_metadata,
            applied_guardrails=applied_guardrails,
            mcp_tool_call_metadata=mcp_tool_call_metadata,
            vector_store_request_metadata=vector_store_request_metadata,
            usage_object=usage_object,
            requester_custom_headers=None,
            user_api_key_request_route=None,
        )
        if isinstance(metadata, dict):
            # Filter the metadata dictionary to include only the specified keys
            supported_keys = StandardLoggingMetadata.__annotations__.keys()
            for key in supported_keys:
                if key in metadata:
                    clean_metadata[key] = metadata[key]  # type: ignore

            if metadata.get("user_api_key") is not None:
                if is_valid_sha256_hash(str(metadata.get("user_api_key"))):
                    clean_metadata["user_api_key_hash"] = metadata.get(
                        "user_api_key"
                    )  # this is the hash
            _potential_requester_metadata = metadata.get(
                "metadata", None
            )  # check if user passed metadata in the sdk request - e.g. metadata for langsmith logging - https://docs.litellm.ai/docs/observability/langsmith_integration#set-langsmith-fields
            if (
                clean_metadata["requester_metadata"] is None
                and _potential_requester_metadata is not None
                and isinstance(_potential_requester_metadata, dict)
            ):
                clean_metadata["requester_metadata"] = _potential_requester_metadata

        if (
            EnterpriseStandardLoggingPayloadSetupVAR
            and proxy_server_request is not None
        ):
            clean_metadata = EnterpriseStandardLoggingPayloadSetupVAR.apply_enterprise_specific_metadata(
                standard_logging_metadata=clean_metadata,
                proxy_server_request=proxy_server_request,
            )

        return clean_metadata

    @staticmethod
    def get_usage_from_response_obj(
        response_obj: Optional[dict], combined_usage_object: Optional[Usage] = None
    ) -> Usage:
        ## BASE CASE ##
        if combined_usage_object is not None:
            return combined_usage_object
        if response_obj is None:
            return Usage(
                prompt_tokens=0,
                completion_tokens=0,
                total_tokens=0,
            )

        usage = response_obj.get("usage", None) or {}
        if usage is None or (
            not isinstance(usage, dict) and not isinstance(usage, Usage)
        ):
            return Usage(
                prompt_tokens=0,
                completion_tokens=0,
                total_tokens=0,
            )
        elif isinstance(usage, Usage):
            return usage
        elif isinstance(usage, dict):
            if ResponseAPILoggingUtils._is_response_api_usage(usage):
                return (
                    ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage(
                        usage
                    )
                )
            return Usage(**usage)

        raise ValueError(f"usage is required, got={usage} of type {type(usage)}")

    @staticmethod
    def get_model_cost_information(
        base_model: Optional[str],
        custom_pricing: Optional[bool],
        custom_llm_provider: Optional[str],
        init_response_obj: Union[Any, BaseModel, dict],
    ) -> StandardLoggingModelInformation:
        model_cost_name = _select_model_name_for_cost_calc(
            model=None,
            completion_response=init_response_obj,  # type: ignore
            base_model=base_model,
            custom_pricing=custom_pricing,
        )
        if model_cost_name is None:
            model_cost_information = StandardLoggingModelInformation(
                model_map_key="", model_map_value=None
            )
        else:
            try:
                _model_cost_information = litellm.get_model_info(
                    model=model_cost_name, custom_llm_provider=custom_llm_provider
                )
                model_cost_information = StandardLoggingModelInformation(
                    model_map_key=model_cost_name,
                    model_map_value=_model_cost_information,
                )
            except Exception:
                verbose_logger.debug(  # keep in debug otherwise it will trigger on every call
                    "Model={} is not mapped in model cost map. Defaulting to None model_cost_information for standard_logging_payload".format(
                        model_cost_name
                    )
                )
                model_cost_information = StandardLoggingModelInformation(
                    model_map_key=model_cost_name, model_map_value=None
                )
        return model_cost_information

    @staticmethod
    def get_final_response_obj(
        response_obj: dict, init_response_obj: Union[Any, BaseModel, dict], kwargs: dict
    ) -> Optional[Union[dict, str, list]]:
        """
        Get final response object after redacting the message input/output from logging
        """
        if response_obj is not None:
            final_response_obj: Optional[Union[dict, str, list]] = response_obj
        elif isinstance(init_response_obj, list) or isinstance(init_response_obj, str):
            final_response_obj = init_response_obj
        else:
            final_response_obj = None

        modified_final_response_obj = redact_message_input_output_from_logging(
            model_call_details=kwargs,
            result=final_response_obj,
        )

        if modified_final_response_obj is not None and isinstance(
            modified_final_response_obj, BaseModel
        ):
            final_response_obj = modified_final_response_obj.model_dump()
        else:
            final_response_obj = modified_final_response_obj

        return final_response_obj

    @staticmethod
    def get_additional_headers(
        additiona_headers: Optional[dict],
    ) -> Optional[StandardLoggingAdditionalHeaders]:
        if additiona_headers is None:
            return None

        additional_logging_headers: StandardLoggingAdditionalHeaders = {}

        for key in StandardLoggingAdditionalHeaders.__annotations__.keys():
            _key = key.lower()
            _key = _key.replace("_", "-")
            if _key in additiona_headers:
                try:
                    additional_logging_headers[key] = int(additiona_headers[_key])  # type: ignore
                except (ValueError, TypeError):
                    verbose_logger.debug(
                        f"Could not convert {additiona_headers[_key]} to int for key {key}."
                    )
        return additional_logging_headers

    @staticmethod
    def get_hidden_params(
        hidden_params: Optional[dict],
    ) -> StandardLoggingHiddenParams:
        clean_hidden_params = StandardLoggingHiddenParams(
            model_id=None,
            cache_key=None,
            api_base=None,
            response_cost=None,
            additional_headers=None,
            litellm_overhead_time_ms=None,
            batch_models=None,
            litellm_model_name=None,
            usage_object=None,
        )
        if hidden_params is not None:
            for key in StandardLoggingHiddenParams.__annotations__.keys():
                if key in hidden_params:
                    if key == "additional_headers":
                        clean_hidden_params["additional_headers"] = (
                            StandardLoggingPayloadSetup.get_additional_headers(
                                hidden_params[key]
                            )
                        )
                    else:
                        clean_hidden_params[key] = hidden_params[key]  # type: ignore
        return clean_hidden_params

    @staticmethod
    def strip_trailing_slash(api_base: Optional[str]) -> Optional[str]:
        if api_base:
            return api_base.rstrip("/")
        return api_base

    @staticmethod
    def get_error_information(
        original_exception: Optional[Exception],
        traceback_str: Optional[str] = None,
    ) -> StandardLoggingPayloadErrorInformation:
        from litellm.constants import MAXIMUM_TRACEBACK_LINES_TO_LOG

        error_status: str = str(getattr(original_exception, "status_code", ""))
        error_class: str = (
            str(original_exception.__class__.__name__) if original_exception else ""
        )
        _llm_provider_in_exception = getattr(original_exception, "llm_provider", "")

        # Get traceback information (first 100 lines)
        traceback_info = traceback_str or ""
        if original_exception:
            tb = getattr(original_exception, "__traceback__", None)
            if tb:
                tb_lines = traceback.format_tb(tb)
                traceback_info += "".join(
                    tb_lines[:MAXIMUM_TRACEBACK_LINES_TO_LOG]
                )  # Limit to first 100 lines

        # Get additional error details
        error_message = str(original_exception)

        return StandardLoggingPayloadErrorInformation(
            error_code=error_status,
            error_class=error_class,
            llm_provider=_llm_provider_in_exception,
            traceback=traceback_info,
            error_message=error_message if original_exception else "",
        )

    @staticmethod
    def get_response_time(
        start_time_float: float,
        end_time_float: float,
        completion_start_time_float: float,
        stream: bool,
    ) -> float:
        """
        Get the response time for the LLM response

        Args:
            start_time_float: float - start time of the LLM call
            end_time_float: float - end time of the LLM call
            completion_start_time_float: float - time to first token of the LLM response (for streaming responses)
            stream: bool - True when a stream response is returned

        Returns:
            float: The response time for the LLM response
        """
        if stream is True:
            return completion_start_time_float - start_time_float
        else:
            return end_time_float - start_time_float

    @staticmethod
    def _get_standard_logging_payload_trace_id(
        logging_obj: Logging,
        litellm_params: dict,
    ) -> str:
        """
        Returns the `litellm_trace_id` for this request

        This helps link sessions when multiple requests are made in a single session
        """
        dynamic_litellm_session_id = litellm_params.get("litellm_session_id")
        dynamic_litellm_trace_id = litellm_params.get("litellm_trace_id")

        # Note: we recommend using `litellm_session_id` for session tracking
        # `litellm_trace_id` is an internal litellm param
        if dynamic_litellm_session_id:
            return str(dynamic_litellm_session_id)
        elif dynamic_litellm_trace_id:
            return str(dynamic_litellm_trace_id)
        else:
            return logging_obj.litellm_trace_id

    @staticmethod
    def _get_user_agent_tags(proxy_server_request: dict) -> Optional[List[str]]:
        """
        Return the user agent tags from the proxy server request for spend tracking
        """
        if litellm.disable_add_user_agent_to_request_tags is True:
            return None
        user_agent_tags: Optional[List[str]] = None
        headers = proxy_server_request.get("headers", {})
        if headers is not None and isinstance(headers, dict):
            if "user-agent" in headers:
                user_agent = headers["user-agent"]
                if user_agent is not None:
                    if user_agent_tags is None:
                        user_agent_tags = []
                    user_agent_part: Optional[str] = None
                    if "/" in user_agent:
                        user_agent_part = user_agent.split("/")[0]
                    if user_agent_part is not None:
                        user_agent_tags.append("User-Agent: " + user_agent_part)
                    if user_agent is not None:
                        user_agent_tags.append("User-Agent: " + user_agent)
        return user_agent_tags

    @staticmethod
    def _get_extra_header_tags(proxy_server_request: dict) -> Optional[List[str]]:
        """
        Extract additional header tags for spend tracking based on config.
        """
        extra_headers: List[str] = litellm.extra_spend_tag_headers or []
        if not extra_headers:
            return None

        headers = proxy_server_request.get("headers", {})
        if not isinstance(headers, dict):
            return None

        header_tags = []
        for header_name in extra_headers:
            header_value = headers.get(header_name)
            if header_value:
                header_tags.append(f"{header_name}: {header_value}")

        return header_tags if header_tags else None

    @staticmethod
    def _get_request_tags(metadata: dict, proxy_server_request: dict) -> List[str]:
        request_tags = (
            metadata.get("tags", [])
            if isinstance(metadata.get("tags", []), list)
            else []
        )
        user_agent_tags = StandardLoggingPayloadSetup._get_user_agent_tags(
            proxy_server_request
        )
        additional_header_tags = StandardLoggingPayloadSetup._get_extra_header_tags(
            proxy_server_request
        )
        if user_agent_tags is not None:
            request_tags.extend(user_agent_tags)
        if additional_header_tags is not None:
            request_tags.extend(additional_header_tags)
        return request_tags


def get_standard_logging_object_payload(
    kwargs: Optional[dict],
    init_response_obj: Union[Any, BaseModel, dict],
    start_time: dt_object,
    end_time: dt_object,
    logging_obj: Logging,
    status: StandardLoggingPayloadStatus,
    error_str: Optional[str] = None,
    original_exception: Optional[Exception] = None,
    standard_built_in_tools_params: Optional[StandardBuiltInToolsParams] = None,
) -> Optional[StandardLoggingPayload]:
    try:
        kwargs = kwargs or {}

        hidden_params: Optional[dict] = None
        if init_response_obj is None:
            response_obj = {}
        elif isinstance(init_response_obj, BaseModel):
            response_obj = init_response_obj.model_dump()
            hidden_params = getattr(init_response_obj, "_hidden_params", None)
        elif isinstance(init_response_obj, dict):
            response_obj = init_response_obj
        else:
            response_obj = {}

        if original_exception is not None and hidden_params is None:
            response_headers = _get_response_headers(original_exception)
            if response_headers is not None:
                hidden_params = dict(
                    StandardLoggingHiddenParams(
                        additional_headers=StandardLoggingPayloadSetup.get_additional_headers(
                            dict(response_headers)
                        ),
                        model_id=None,
                        cache_key=None,
                        api_base=None,
                        response_cost=None,
                        litellm_overhead_time_ms=None,
                        batch_models=None,
                        litellm_model_name=None,
                        usage_object=None,
                    )
                )

        # standardize this function to be used across, s3, dynamoDB, langfuse logging
        litellm_params = kwargs.get("litellm_params", {})
        proxy_server_request = litellm_params.get("proxy_server_request") or {}

        metadata: dict = (
            litellm_params.get("litellm_metadata")
            or litellm_params.get("metadata", None)
            or {}
        )

        completion_start_time = kwargs.get("completion_start_time", end_time)
        call_type = kwargs.get("call_type")
        cache_hit = kwargs.get("cache_hit", False)
        usage = StandardLoggingPayloadSetup.get_usage_from_response_obj(
            response_obj=response_obj,
            combined_usage_object=cast(
                Optional[Usage], kwargs.get("combined_usage_object")
            ),
        )

        id = response_obj.get("id", kwargs.get("litellm_call_id"))

        _model_id = metadata.get("model_info", {}).get("id", "")
        _model_group = metadata.get("model_group", "")

        request_tags = StandardLoggingPayloadSetup._get_request_tags(
            metadata=metadata, proxy_server_request=proxy_server_request
        )

        # cleanup timestamps
        (
            start_time_float,
            end_time_float,
            completion_start_time_float,
        ) = StandardLoggingPayloadSetup.cleanup_timestamps(
            start_time=start_time,
            end_time=end_time,
            completion_start_time=completion_start_time,
        )
        response_time = StandardLoggingPayloadSetup.get_response_time(
            start_time_float=start_time_float,
            end_time_float=end_time_float,
            completion_start_time_float=completion_start_time_float,
            stream=kwargs.get("stream", False),
        )
        # clean up litellm hidden params
        clean_hidden_params = StandardLoggingPayloadSetup.get_hidden_params(
            hidden_params
        )

        # clean up litellm metadata
        clean_metadata = StandardLoggingPayloadSetup.get_standard_logging_metadata(
            metadata=metadata,
            litellm_params=litellm_params,
            prompt_integration=kwargs.get("prompt_integration", None),
            applied_guardrails=kwargs.get("applied_guardrails", None),
            mcp_tool_call_metadata=kwargs.get("mcp_tool_call_metadata", None),
            vector_store_request_metadata=kwargs.get(
                "vector_store_request_metadata", None
            ),
            usage_object=usage.model_dump(),
            proxy_server_request=proxy_server_request,
        )

        _request_body = proxy_server_request.get("body", {})
        end_user_id = clean_metadata["user_api_key_end_user_id"] or _request_body.get(
            "user", None
        )  # maintain backwards compatibility with old request body check

        saved_cache_cost: float = 0.0
        if cache_hit is True:
            id = f"{id}_cache_hit{time.time()}"  # do not duplicate the request id
            saved_cache_cost = (
                logging_obj._response_cost_calculator(
                    result=init_response_obj, cache_hit=False  # type: ignore
                )
                or 0.0
            )

        ## Get model cost information ##
        base_model = _get_base_model_from_metadata(model_call_details=kwargs)
        custom_pricing = use_custom_pricing_for_model(litellm_params=litellm_params)

        model_cost_information = StandardLoggingPayloadSetup.get_model_cost_information(
            base_model=base_model,
            custom_pricing=custom_pricing,
            custom_llm_provider=kwargs.get("custom_llm_provider"),
            init_response_obj=init_response_obj,
        )
        response_cost: float = kwargs.get("response_cost", 0) or 0.0

        error_information = StandardLoggingPayloadSetup.get_error_information(
            original_exception=original_exception,
        )

        ## get final response object ##
        final_response_obj = StandardLoggingPayloadSetup.get_final_response_obj(
            response_obj=response_obj,
            init_response_obj=init_response_obj,
            kwargs=kwargs,
        )

        stream: Optional[bool] = None
        if (
            kwargs.get("complete_streaming_response") is not None
            or kwargs.get("async_complete_streaming_response") is not None
        ) and kwargs.get("stream") is True:
            stream = True

        payload: StandardLoggingPayload = StandardLoggingPayload(
            id=str(id),
            trace_id=StandardLoggingPayloadSetup._get_standard_logging_payload_trace_id(
                logging_obj=logging_obj,
                litellm_params=litellm_params,
            ),
            call_type=call_type or "",
            cache_hit=cache_hit,
            stream=stream,
            status=status,
            custom_llm_provider=cast(Optional[str], kwargs.get("custom_llm_provider")),
            saved_cache_cost=saved_cache_cost,
            startTime=start_time_float,
            endTime=end_time_float,
            completionStartTime=completion_start_time_float,
            response_time=response_time,
            model=kwargs.get("model", "") or "",
            metadata=clean_metadata,
            cache_key=clean_hidden_params["cache_key"],
            response_cost=response_cost,
            total_tokens=usage.total_tokens,
            prompt_tokens=usage.prompt_tokens,
            completion_tokens=usage.completion_tokens,
            request_tags=request_tags,
            end_user=end_user_id or "",
            api_base=StandardLoggingPayloadSetup.strip_trailing_slash(
                litellm_params.get("api_base", "")
            )
            or "",
            model_group=_model_group,
            model_id=_model_id,
            requester_ip_address=clean_metadata.get("requester_ip_address", None),
            messages=kwargs.get("messages"),
            response=final_response_obj,
            model_parameters=ModelParamHelper.get_standard_logging_model_parameters(
                kwargs.get("optional_params", None) or {}
            ),
            hidden_params=clean_hidden_params,
            model_map_information=model_cost_information,
            error_str=error_str,
            error_information=error_information,
            response_cost_failure_debug_info=kwargs.get(
                "response_cost_failure_debug_information"
            ),
            guardrail_information=metadata.get(
                "standard_logging_guardrail_information", None
            ),
            standard_built_in_tools_params=standard_built_in_tools_params,
        )

        emit_standard_logging_payload(payload)
        return payload
    except Exception as e:
        verbose_logger.exception(
            "Error creating standard logging object - {}".format(str(e))
        )
        return None


def emit_standard_logging_payload(payload: StandardLoggingPayload):
    if os.getenv("LITELLM_PRINT_STANDARD_LOGGING_PAYLOAD"):
        verbose_logger.info(json.dumps(payload, indent=4))


def get_standard_logging_metadata(
    metadata: Optional[Dict[str, Any]],
) -> StandardLoggingMetadata:
    """
    Clean and filter the metadata dictionary to include only the specified keys in StandardLoggingMetadata.

    Args:
        metadata (Optional[Dict[str, Any]]): The original metadata dictionary.

    Returns:
        StandardLoggingMetadata: A StandardLoggingMetadata object containing the cleaned metadata.

    Note:
        - If the input metadata is None or not a dictionary, an empty StandardLoggingMetadata object is returned.
        - If 'user_api_key' is present in metadata and is a valid SHA256 hash, it's stored as 'user_api_key_hash'.
    """
    # Initialize with default values
    clean_metadata = StandardLoggingMetadata(
        user_api_key_hash=None,
        user_api_key_alias=None,
        user_api_key_team_id=None,
        user_api_key_org_id=None,
        user_api_key_user_id=None,
        user_api_key_user_email=None,
        user_api_key_team_alias=None,
        spend_logs_metadata=None,
        requester_ip_address=None,
        requester_metadata=None,
        user_api_key_end_user_id=None,
        prompt_management_metadata=None,
        applied_guardrails=None,
        mcp_tool_call_metadata=None,
        vector_store_request_metadata=None,
        usage_object=None,
        requester_custom_headers=None,
        user_api_key_request_route=None,
    )
    if isinstance(metadata, dict):
        # Filter the metadata dictionary to include only the specified keys
        clean_metadata = StandardLoggingMetadata(
            **{  # type: ignore
                key: metadata[key]
                for key in StandardLoggingMetadata.__annotations__.keys()
                if key in metadata
            }
        )

        if metadata.get("user_api_key") is not None:
            if is_valid_sha256_hash(str(metadata.get("user_api_key"))):
                clean_metadata["user_api_key_hash"] = metadata.get(
                    "user_api_key"
                )  # this is the hash
    return clean_metadata


def scrub_sensitive_keys_in_metadata(litellm_params: Optional[dict]):
    if litellm_params is None:
        litellm_params = {}

    metadata = litellm_params.get("metadata", {}) or {}

    ## check user_api_key_metadata for sensitive logging keys
    cleaned_user_api_key_metadata = {}
    if "user_api_key_metadata" in metadata and isinstance(
        metadata["user_api_key_metadata"], dict
    ):
        for k, v in metadata["user_api_key_metadata"].items():
            if k == "logging":  # prevent logging user logging keys
                cleaned_user_api_key_metadata[k] = (
                    "scrubbed_by_litellm_for_sensitive_keys"
                )
            else:
                cleaned_user_api_key_metadata[k] = v

        metadata["user_api_key_metadata"] = cleaned_user_api_key_metadata
        litellm_params["metadata"] = metadata

    return litellm_params


# integration helper function
def modify_integration(integration_name, integration_params):
    global supabaseClient
    if integration_name == "supabase":
        if "table_name" in integration_params:
            Supabase.supabase_table_name = integration_params["table_name"]


@lru_cache(maxsize=16)
def _get_traceback_str_for_error(error_str: str) -> str:
    """
    function wrapped with lru_cache to limit the number of times `traceback.format_exc()` is called
    """
    return traceback.format_exc()


from decimal import Decimal

# used for unit testing
from typing import Any, Dict, List, Optional, Union


def create_dummy_standard_logging_payload() -> StandardLoggingPayload:
    # First create the nested objects with proper typing
    model_info = StandardLoggingModelInformation(
        model_map_key="gpt-3.5-turbo", model_map_value=None
    )

    metadata = StandardLoggingMetadata(  # type: ignore
        user_api_key_hash=str("test_hash"),
        user_api_key_alias=str("test_alias"),
        user_api_key_team_id=str("test_team"),
        user_api_key_user_id=str("test_user"),
        user_api_key_team_alias=str("test_team_alias"),
        user_api_key_org_id=None,
        spend_logs_metadata=None,
        requester_ip_address=str("127.0.0.1"),
        requester_metadata=None,
        user_api_key_end_user_id=str("test_end_user"),
    )

    hidden_params = StandardLoggingHiddenParams(
        model_id=None,
        cache_key=None,
        api_base=None,
        response_cost=None,
        additional_headers=None,
        litellm_overhead_time_ms=None,
        batch_models=None,
        litellm_model_name=None,
        usage_object=None,
    )

    # Convert numeric values to appropriate types
    response_cost = Decimal("0.1")
    start_time = Decimal("1234567890.0")
    end_time = Decimal("1234567891.0")
    completion_start_time = Decimal("1234567890.5")
    saved_cache_cost = Decimal("0.0")

    # Create messages and response with proper typing
    messages: List[Dict[str, str]] = [{"role": "user", "content": "Hello, world!"}]
    response: Dict[str, List[Dict[str, Dict[str, str]]]] = {
        "choices": [{"message": {"content": "Hi there!"}}]
    }

    # Main payload initialization
    return StandardLoggingPayload(  # type: ignore
        id=str("test_id"),
        call_type=str("completion"),
        stream=bool(False),
        response_cost=response_cost,
        response_cost_failure_debug_info=None,
        status=str("success"),
        total_tokens=int(
            DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT
            + DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT
        ),
        prompt_tokens=int(DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT),
        completion_tokens=int(DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT),
        startTime=start_time,
        endTime=end_time,
        completionStartTime=completion_start_time,
        model_map_information=model_info,
        model=str("gpt-3.5-turbo"),
        model_id=str("model-123"),
        model_group=str("openai-gpt"),
        custom_llm_provider=str("openai"),
        api_base=str("https://api.openai.com"),
        metadata=metadata,
        cache_hit=bool(False),
        cache_key=None,
        saved_cache_cost=saved_cache_cost,
        request_tags=[],
        end_user=None,
        requester_ip_address=str("127.0.0.1"),
        messages=messages,
        response=response,
        error_str=None,
        model_parameters={"stream": True},
        hidden_params=hidden_params,
    )
